Local Description of Homogeneous Real Hypersurfaces of the Two-Dimensional Complex Space in Terms of Their Normal Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 2, pp. 33-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a classification of real hypersurfaces of the space $\mathbb{C}^2$ that admit transitive actions of local Lie groups of holomorphic transformations is constructed. Any nonspherical Levi nondegenerate homogeneous surface is determined by the triple of real coefficients $N^2_{520}$, $N_{440}$, $\operatorname{Im}N_{421}$ of a Moser normal equation. All such surfaces are described by several quadratic curves in the space of above coefficients.
@article{FAA_2000_34_2_a3,
     author = {A. V. Loboda},
     title = {Local {Description} of {Homogeneous} {Real} {Hypersurfaces} of the {Two-Dimensional} {Complex} {Space} in {Terms} of {Their} {Normal} {Equations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {33--42},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a3/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - Local Description of Homogeneous Real Hypersurfaces of the Two-Dimensional Complex Space in Terms of Their Normal Equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 33
EP  - 42
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a3/
LA  - ru
ID  - FAA_2000_34_2_a3
ER  - 
%0 Journal Article
%A A. V. Loboda
%T Local Description of Homogeneous Real Hypersurfaces of the Two-Dimensional Complex Space in Terms of Their Normal Equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 33-42
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a3/
%G ru
%F FAA_2000_34_2_a3
A. V. Loboda. Local Description of Homogeneous Real Hypersurfaces of the Two-Dimensional Complex Space in Terms of Their Normal Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 2, pp. 33-42. http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a3/

[1] Cartan E., “Sur la geometrie pseudoconforme des hypersurfaces de deux variables complexes”, Ann. Math. Pura Appl. (4), 11 (1933), 17–90 ; Oeuvres II 1231–1304 | DOI | MR

[2] Morimoto A., Nagano T., “On pseudo-conformal transformations of hypersurfaces”, J. Math. Soc. Japan, 15:3 (1963), 289–300 | DOI | MR | Zbl

[3] Rossi H., “Homogeneous strongly pseudoconvex hypersurfaces”, Rice Univ. Studies, 59:3 (1973), 131–145 | MR | Zbl

[4] Ehlers F., Neumann W. D., Scherk J., “Links of surface singularities and CR space forms”, Comment. Math. Helv., 62 (1987), 240–264 | DOI | MR | Zbl

[5] Loboda A. V., “O nekotorykh invariantakh trubchatykh giperpoverkhnostei v $C^2$”, Matem. zametki, 59:2 (1996), 211–223 | DOI | MR | Zbl

[6] Beloshapka V. K., “Odnorodnye giperpoverkhnosti v $C^2$”, Matem. zametki, 60:5 (1996), 760–764 | DOI | MR | Zbl

[7] Loboda A. V., “O klassifikatsii affinno-odnorodnykh poverkhnostei prostranstva $R^3$ v terminakh ikh normalnykh uravnenii”, Pontryaginskie chteniya-IX, Tezisy dokladov, Voronezh, 1998, 124

[8] Loboda A. V., “O tranzitivnykh deistviyakh grupp na slabo odnorodnykh mnogoobraziyakh”, Pontryaginskie chteniya-VIII, Tezisy dokladov, Voronezh, 1997, 92

[9] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3 (1974), 219–271 | DOI | MR

[10] Beloshapka V. K., “O razmernosti grupp avtomorfizmov analiticheskoi giperpoverkhnosti”, Izv. AN SSSR, ser. matem., 43:2 (1979), 243–266 | MR | Zbl

[11] Loboda A. V., “O lokalnykh avtomorfizmakh veschestvenno-analiticheskikh giperpoverkhnostei”, Izv. AN SSSR, ser. matem., 45:3 (1981), 620–645 | MR | Zbl

[12] Loboda A. V., “Linearizuemost avtomorfizmov nesfericheskikh poverkhnostei”, Izv. AN CCCR, ser. matem., 46:4 (1982), 864–880 | MR | Zbl

[13] Guzeev R. N., Loboda A. V., “O golomorfnykh invariantakh logarifmicheskikh spiralei”, Izv. VUZov. Matematika, 1998, no. 2, 16–19 | MR | Zbl