An Initial-Boundary Value Problem on the Half-Line for the MKdV Equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 1, pp. 65-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial-boundary value problem on the half-line for the modified Korteweg–de Vries equation with zero boundary conditions and arbitrary rapidly decaying initial conditions is embedded in the scheme of the inverse scattering method. The corresponding inverse scattering problem is reduced to the Riemann problem on a system of rays in the complex plane.
@article{FAA_2000_34_1_a5,
     author = {I. T. Habibullin},
     title = {An {Initial-Boundary} {Value} {Problem} on the {Half-Line} for the {MKdV} {Equation}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {65--75},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a5/}
}
TY  - JOUR
AU  - I. T. Habibullin
TI  - An Initial-Boundary Value Problem on the Half-Line for the MKdV Equation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 65
EP  - 75
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a5/
LA  - ru
ID  - FAA_2000_34_1_a5
ER  - 
%0 Journal Article
%A I. T. Habibullin
%T An Initial-Boundary Value Problem on the Half-Line for the MKdV Equation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 65-75
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a5/
%G ru
%F FAA_2000_34_1_a5
I. T. Habibullin. An Initial-Boundary Value Problem on the Half-Line for the MKdV Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 1, pp. 65-75. http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a5/

[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[2] Fokas A. S., Its A. R., “An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates”, TMF, 92:3 (1992), 386–403 | MR

[3] Ablowitz M. J., Segur H. J., “The inverse scattering problem in a semi-infinite interval”, J. Math. Phys., 16 (1975), 1054–1066 | DOI | MR

[4] Sklyanin E. K., “Granichnye usloviya dlya integriruemykh sistem”, Funkts. analiz i ego pril., 21:2 (1987), 86–87 | MR | Zbl

[5] Tarasov V. O., “The integrable initial-boundary value problem on a semiline: nonlinear Schrodinger and sine-Gordon equations”, Inverse Problems, 7:3 (1991), 435–449 | DOI | MR | Zbl

[6] Khabibullin I. T., “Ob integriruemosti nachalno-kraevykh zadach”, TMF, 86:1 (1991), 43–51 | MR

[7] Habibullin I. T., “Symmetries of boundary problems”, Phys. Lett. A, 178:5–6 (1993), 369–375 | DOI | MR

[8] Gürel B., Gürses M., Habibullin I., “Boundary value problems for integrable equations compatible with the symmetry algebra”, J. Math. Phys., 36:12 (1995), 6809–6821 | DOI | MR | Zbl

[9] Adler V., Gürel B., Gürses M., Habibullin I., “Boundary conditions for integrable equations”, J. Phys. A, Math. Gen., 30 (1997), 3505–3513 | DOI | MR | Zbl

[10] Nobl B., Primenenie metoda Vinera–Khopfa dlya resheniya differentsialnykh uravnenii v chastnykh proizvodnykh, IL, M., 1962

[11] Krichever I. M., “Analog formuly Dalambera dlya uravnenii glavnogo kiralnogo polya i uravneniya sine-Gordon”, DAN SSSR, 253 (1980), 288–292 | MR | Zbl

[12] Ramazanov M. D., “Kraevaya zadacha dlya odnogo tipa differentsialnykh uravnenii”, Matem. sb., 64:2 (1964), 234–261 | MR | Zbl

[13] An Ton Bui, “Initial boundary value problem for the Korteweg–de Vries equation”, J. Differential Equations, 25:3 (1977), 288–309 | DOI | MR | Zbl

[14] Faminskii A. V., “Smeshannaya zadacha v polupolose dlya uravneniya Kortevega–de Friza i ego obobschenii”, Trudy MMO, 51, 1988, 54–94 | MR

[15] Adler V. E., Khabibullin I. T., Shabat A. B., “Kraevaya zadacha dlya uravneniya KdF na poluosi”, TMF, 110:1 (1997), 98–113 | DOI | MR | Zbl

[16] Shabat A. B., “Obratnaya zadacha rasseyaniya”, Diff. uravneniya, 15:10 (1979), 1824–1835 | MR

[17] Prësdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR

[18] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II”, Phys. D, 2:3 (1981), 407–448 | DOI | MR