Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2000_34_1_a5, author = {I. T. Habibullin}, title = {An {Initial-Boundary} {Value} {Problem} on the {Half-Line} for the {MKdV} {Equation}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {65--75}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a5/} }
I. T. Habibullin. An Initial-Boundary Value Problem on the Half-Line for the MKdV Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 1, pp. 65-75. http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a5/
[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR
[2] Fokas A. S., Its A. R., “An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates”, TMF, 92:3 (1992), 386–403 | MR
[3] Ablowitz M. J., Segur H. J., “The inverse scattering problem in a semi-infinite interval”, J. Math. Phys., 16 (1975), 1054–1066 | DOI | MR
[4] Sklyanin E. K., “Granichnye usloviya dlya integriruemykh sistem”, Funkts. analiz i ego pril., 21:2 (1987), 86–87 | MR | Zbl
[5] Tarasov V. O., “The integrable initial-boundary value problem on a semiline: nonlinear Schrodinger and sine-Gordon equations”, Inverse Problems, 7:3 (1991), 435–449 | DOI | MR | Zbl
[6] Khabibullin I. T., “Ob integriruemosti nachalno-kraevykh zadach”, TMF, 86:1 (1991), 43–51 | MR
[7] Habibullin I. T., “Symmetries of boundary problems”, Phys. Lett. A, 178:5–6 (1993), 369–375 | DOI | MR
[8] Gürel B., Gürses M., Habibullin I., “Boundary value problems for integrable equations compatible with the symmetry algebra”, J. Math. Phys., 36:12 (1995), 6809–6821 | DOI | MR | Zbl
[9] Adler V., Gürel B., Gürses M., Habibullin I., “Boundary conditions for integrable equations”, J. Phys. A, Math. Gen., 30 (1997), 3505–3513 | DOI | MR | Zbl
[10] Nobl B., Primenenie metoda Vinera–Khopfa dlya resheniya differentsialnykh uravnenii v chastnykh proizvodnykh, IL, M., 1962
[11] Krichever I. M., “Analog formuly Dalambera dlya uravnenii glavnogo kiralnogo polya i uravneniya sine-Gordon”, DAN SSSR, 253 (1980), 288–292 | MR | Zbl
[12] Ramazanov M. D., “Kraevaya zadacha dlya odnogo tipa differentsialnykh uravnenii”, Matem. sb., 64:2 (1964), 234–261 | MR | Zbl
[13] An Ton Bui, “Initial boundary value problem for the Korteweg–de Vries equation”, J. Differential Equations, 25:3 (1977), 288–309 | DOI | MR | Zbl
[14] Faminskii A. V., “Smeshannaya zadacha v polupolose dlya uravneniya Kortevega–de Friza i ego obobschenii”, Trudy MMO, 51, 1988, 54–94 | MR
[15] Adler V. E., Khabibullin I. T., Shabat A. B., “Kraevaya zadacha dlya uravneniya KdF na poluosi”, TMF, 110:1 (1997), 98–113 | DOI | MR | Zbl
[16] Shabat A. B., “Obratnaya zadacha rasseyaniya”, Diff. uravneniya, 15:10 (1979), 1824–1835 | MR
[17] Prësdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR
[18] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II”, Phys. D, 2:3 (1981), 407–448 | DOI | MR