Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2000_34_1_a0, author = {V. E. Adler}, title = {Legendre {Transforms} on a {Triangular} {Lattice}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--11}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a0/} }
V. E. Adler. Legendre Transforms on a Triangular Lattice. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a0/
[1] Toda M., Teoriya nelineinykh reshetok, Mir, M., 1984 | MR
[2] Adler V. E., Shabat A. B., “Obobschennye preobrazovaniya Lezhandra”, TMF, 112:2 (1997), 179–194 | DOI | MR | Zbl
[3] Hirota R., “Nonlinear partial difference equations. II: Discrete-time Toda equation”, J. Phys. Soc. Japan, 43 (1977), 2074–2078 | DOI | MR
[4] Suris Yu. B., “Discrete time generalized Toda lattices: complete integrability and relation with relativistic Toda lattices”, Phys. Lett. A, 145 (1990), 113–119 | DOI | MR
[5] Suris Yu. B., “Bi-Hamiltonian structure of the $qd$ algorithm and new discretizations of the Toda lattice”, Phys. Lett. A, 206 (1995), 153–161 | DOI | MR | Zbl
[6] Suris Yu. B., “A discrete-time relativistic Toda lattice”, J. Phys. A, 29 (1996), 451–465 | DOI | MR | Zbl
[7] Suris Yu. B., A collection of integrable systems of the Toda type in continuous and discrete time, with $2\times 2$ Lax representations, arXiv: /solv-int/9703004
[8] Suris Yu. B., “New integrable systems related to the relativistic Toda lattice”, J. Phys. A, 30 (1997), 1745–1761 | DOI | MR | Zbl
[9] Ramani A., Grammaticos B., Satsuma J., “Integrability of multidimensional discrete systems”, Phys. Lett. A, 169 (1992), 323–328 | DOI | MR