An Averaging Method for the Quantum Many-Body Problem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 4, pp. 50-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new averaging formula for many-particle Schrödinger operators permits one to apply the method of nonstandard characteristics provided that the mean number of particles is a large parameter. For the characteristic equation, which generalizes the corresponding Cooper–Bardeen–Schrieffer–Bogolyubov equation, a Lax pair is written out.
@article{FAA_1999_33_4_a3,
     author = {V. P. Maslov},
     title = {An {Averaging} {Method} for the {Quantum} {Many-Body} {Problem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {50--64},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a3/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - An Averaging Method for the Quantum Many-Body Problem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1999
SP  - 50
EP  - 64
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a3/
LA  - ru
ID  - FAA_1999_33_4_a3
ER  - 
%0 Journal Article
%A V. P. Maslov
%T An Averaging Method for the Quantum Many-Body Problem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1999
%P 50-64
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a3/
%G ru
%F FAA_1999_33_4_a3
V. P. Maslov. An Averaging Method for the Quantum Many-Body Problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 4, pp. 50-64. http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a3/

[1] Bogolyubov N. N., Izbrannye trudy, T. 3, Naukova dumka, Kiev, 1971 | MR

[2] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR

[3] Maslov V. P., “Quasi-particles associated with isoenergetic manifolds corresponding to classical self-consistent fields, X”, Russian J. Math. Phys., 5:2 (1997), 273–278 | MR | Zbl

[4] Maslov V. P., “Deterministic quantum chaos for systems of bosons and fermions”, Russian J. Math. Phys., 5:4 (1996), 473–488 | MR

[5] Maslov V. P., “Quasi-particles associated with Lagrangian manifolds corresponding to classical self-consistent fields, I”, Russian J. Math. Phys., 2:4 (1995), 527–534 | MR

[6] Landau L. D., Lifshits I. M., Kvantovaya mekhanika. Nerelyativistskaya teoriya, GIFML, M., 1963

[7] Maslov V. P., Kompleksnyi metod VKB, Nauka, M., 1977 | MR