Minimal Widths of Metric Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 4, pp. 38-49
Cet article a éte moissonné depuis la source Math-Net.Ru
The minimal width of an arbitrary metric space is defined as the greatest lower bound of its Kolmogorov widths under all isometric embeddings in all possible Banach spaces and is computed or estimated in a number of examples.
@article{FAA_1999_33_4_a2,
author = {R. S. Ismagilov},
title = {Minimal {Widths} of {Metric} {Spaces}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {38--49},
year = {1999},
volume = {33},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a2/}
}
R. S. Ismagilov. Minimal Widths of Metric Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 4, pp. 38-49. http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a2/
[1] Kolmogorov A. N., “Über die beste Annäherung von Funktionen liner gegebenen Funktionenklasse”, Ann. of Math., 37 (1936), 107–110 | DOI | MR | Zbl
[2] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izdatelstvo MGU, 1976 | MR
[3] Tikhomirov V. M., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, UMN, 15:3 (1960), 81–120 | MR | Zbl
[4] Ismagilov R. S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, UMN, 29:3 (1974), 161–178 | MR | Zbl
[5] Pich A., Yadernye lokalno-vypuklye prostranstva, Mir, M., 1967 | MR