Three-Page Approach to Knot Theory. Encoding and Local Moves
Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 4, pp. 25-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we suggest a new combinatorial approach to knot theory based on embeddings of knots and links into a union of three half-planes with the same boundary. The restriction of the number of pages to three (or any other number $\ge3$) provides a convenient way to encode links by words in a finite alphabet. For those words, we give a finite set of local changes that realizes the equivalence of links by analogy with the Reidemeister moves for planar link diagrams.
@article{FAA_1999_33_4_a1,
     author = {I. A. Dynnikov},
     title = {Three-Page {Approach} to {Knot} {Theory.} {Encoding} and {Local} {Moves}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {25--37},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a1/}
}
TY  - JOUR
AU  - I. A. Dynnikov
TI  - Three-Page Approach to Knot Theory. Encoding and Local Moves
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1999
SP  - 25
EP  - 37
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a1/
LA  - ru
ID  - FAA_1999_33_4_a1
ER  - 
%0 Journal Article
%A I. A. Dynnikov
%T Three-Page Approach to Knot Theory. Encoding and Local Moves
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1999
%P 25-37
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a1/
%G ru
%F FAA_1999_33_4_a1
I. A. Dynnikov. Three-Page Approach to Knot Theory. Encoding and Local Moves. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 4, pp. 25-37. http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a1/

[1] Brunn H., Über verknotete Kurven, Mathematiker-Kongresses Zurich 1897, Leipzig, 1898

[2] Cromwell P. R., Nutt I. J., “Embedding knots and links in an open book. II: Bounds on arc index”, Math. Proc. Cambridge Philos. Soc., 119:2 (1996), 309–319 | DOI | MR | Zbl

[3] Morton H. R., Beltrami E., “Arc index and the Kauffman poynomial”, Math. Proc. Cambridge Philos. Soc., 123 (1998), 41–48 | DOI | MR | Zbl

[4] Dynnikov I. A., “Trekhstranichnoe predstavlenie zatseplenii”, UMN, 53:5 (1998), 237–238 | DOI | MR | Zbl

[5] Dynnikov I. A., A new way to represent links. One-dimensional formalism and untangling technology, Preprint, Moscow, 1998 | DOI | MR | Zbl

[6] Turaev V. G., “Operatornye invarianty svyazok i $R$-matritsy”, Izv. AN SSSR, ser. matem., 53:5 (1989), 1073–1107 | MR

[7] Kauffman L. H., “State models and the Jones polynomial”, Topology, 26:3 (1987), 395–407 | DOI | MR | Zbl

[8] Kauffman L. H., “An invariant of regular isotopy”, Trans. Amer. Math. Soc., 318:2 (1990), 417–471 | DOI | MR | Zbl