Invariants of Types $j^+$, $j^-$, and $\operatorname{st}$ for Smooth Curves on Two-Dimensional Manifolds
Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 3, pp. 35-46
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1999_33_3_a2,
author = {A. V. Inshakov},
title = {Invariants of {Types} $j^+$, $j^-$, and $\operatorname{st}$ for {Smooth} {Curves} on {Two-Dimensional} {Manifolds}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {35--46},
year = {1999},
volume = {33},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a2/}
}
TY - JOUR
AU - A. V. Inshakov
TI - Invariants of Types $j^+$, $j^-$, and $\operatorname{st}$ for Smooth Curves on Two-Dimensional Manifolds
JO - Funkcionalʹnyj analiz i ego priloženiâ
PY - 1999
SP - 35
EP - 46
VL - 33
IS - 3
UR - http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a2/
LA - ru
ID - FAA_1999_33_3_a2
ER -
A. V. Inshakov. Invariants of Types $j^+$, $j^-$, and $\operatorname{st}$ for Smooth Curves on Two-Dimensional Manifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 3, pp. 35-46. http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a2/
[1] Arnold V. I., “Plane curves, their invariants, perestroikas and classifications”, Singularities and Bifurcations, Adv. Sov. Math., 21, 1994, 39–91 | MR
[2] Aicardi F., “Invariant polynomial of framed knots in the solid torus and its application to wave fronts and Legendrian knots”, J. Knot Theory Ramifications, 15 (1996), 743–778 | DOI | MR
[3] Tchernov V., Arnold-type invariants of curves on surfaces and homotopy groups of the space of curves, Preprint, Uppsala University, 1997 | MR
[4] Smale S., “Regular curves on Riemannian manifolds”, Trans. Amer. Math. Soc., 87 (1958), 492–512 | DOI | MR | Zbl
[5] Inshakov A. V., “Gomotopicheskie gruppy prostranstv krivykh na dvumernykh mnogoobraziyakh”, UMN, 53:2 (1998), 147–148 | DOI | MR | Zbl