Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1999_33_3_a2, author = {A. V. Inshakov}, title = {Invariants of {Types} $j^+$, $j^-$, and $\operatorname{st}$ for {Smooth} {Curves} on {Two-Dimensional} {Manifolds}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {35--46}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a2/} }
TY - JOUR AU - A. V. Inshakov TI - Invariants of Types $j^+$, $j^-$, and $\operatorname{st}$ for Smooth Curves on Two-Dimensional Manifolds JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1999 SP - 35 EP - 46 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a2/ LA - ru ID - FAA_1999_33_3_a2 ER -
%0 Journal Article %A A. V. Inshakov %T Invariants of Types $j^+$, $j^-$, and $\operatorname{st}$ for Smooth Curves on Two-Dimensional Manifolds %J Funkcionalʹnyj analiz i ego priloženiâ %D 1999 %P 35-46 %V 33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a2/ %G ru %F FAA_1999_33_3_a2
A. V. Inshakov. Invariants of Types $j^+$, $j^-$, and $\operatorname{st}$ for Smooth Curves on Two-Dimensional Manifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 3, pp. 35-46. http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a2/
[1] Arnold V. I., “Plane curves, their invariants, perestroikas and classifications”, Singularities and Bifurcations, Adv. Sov. Math., 21, 1994, 39–91 | MR
[2] Aicardi F., “Invariant polynomial of framed knots in the solid torus and its application to wave fronts and Legendrian knots”, J. Knot Theory Ramifications, 15 (1996), 743–778 | DOI | MR
[3] Tchernov V., Arnold-type invariants of curves on surfaces and homotopy groups of the space of curves, Preprint, Uppsala University, 1997 | MR
[4] Smale S., “Regular curves on Riemannian manifolds”, Trans. Amer. Math. Soc., 87 (1958), 492–512 | DOI | MR | Zbl
[5] Inshakov A. V., “Gomotopicheskie gruppy prostranstv krivykh na dvumernykh mnogoobraziyakh”, UMN, 53:2 (1998), 147–148 | DOI | MR | Zbl