Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1999_33_3_a11, author = {S. V. Savchenko}, title = {Cohomological {Inequalities} for {Finite} {Topological} {Markov} {Chains}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {91--93}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a11/} }
S. V. Savchenko. Cohomological Inequalities for Finite Topological Markov Chains. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 3, pp. 91-93. http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a11/
[1] Livshits A. H., Matem. zametki, 10:5 (1971), 555–564 | MR | Zbl
[2] Livshits A. H., Izv. AH SSSR, Ser. matem., 36:6 (1972), 1296–1320 | MR | Zbl
[3] Bouen R., Metody simvolicheskoi dinamiki. Sb. Matematika, Mir, M., 1979
[4] Parry W., Pollicott M., “Zeta functions and the periodic orbit structure of hyperbolic dynamics”, Asterisque, 187–188, 1990, 1–268 | MR
[5] Poon Y-T., “A $K$-theoretic invariant for dynamical systems”, Trans. Amer. Math. Soc., 311 (1989), 515–533 | DOI | MR | Zbl
[6] Sinai Ya. G., “Gibbsovskie mery v ergodicheskoi teorii”, UMH, 27:4 (1972), 21–64 | MR | Zbl