Reconstruction of the Potential of the Sturm--Liouville Equation from Three Spectra of Boundary Value Problems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 3, pp. 87-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1999_33_3_a10,
     author = {V. N. Pyvovarchyk},
     title = {Reconstruction of the {Potential} of the {Sturm--Liouville} {Equation} from {Three} {Spectra} of {Boundary} {Value} {Problems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {87--90},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a10/}
}
TY  - JOUR
AU  - V. N. Pyvovarchyk
TI  - Reconstruction of the Potential of the Sturm--Liouville Equation from Three Spectra of Boundary Value Problems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1999
SP  - 87
EP  - 90
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a10/
LA  - ru
ID  - FAA_1999_33_3_a10
ER  - 
%0 Journal Article
%A V. N. Pyvovarchyk
%T Reconstruction of the Potential of the Sturm--Liouville Equation from Three Spectra of Boundary Value Problems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1999
%P 87-90
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a10/
%G ru
%F FAA_1999_33_3_a10
V. N. Pyvovarchyk. Reconstruction of the Potential of the Sturm--Liouville Equation from Three Spectra of Boundary Value Problems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 3, pp. 87-90. http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a10/

[1] Jaulent M., Jean C., “The inverse $s$-wave scattering problem for a class of potentials depending on energy”, Commun. Math. Phys., 28 (1972), 177–220 | DOI | MR

[2] Jaulent M., “Inverse scattering problems in absorbing media”, J. Math. Phys., 17:7 (1976), 1351–1360 | DOI | MR

[3] Jaulent M., Jean C., “The inverse problem for the one-dimensional Schrodinger equation with an energy-dependent potential”, Ann. Inst. H. Poincaré, sec. A, 25:2 (1976), 105–118 | MR | Zbl

[4] Aktosun T., Klaus M., van der Mee C., “Wave scattering in one dimension with absorption”, J. Math. Phys., 39:4 (1998), 1957–1992 | DOI | MR | Zbl

[5] Gasymov M. G., Guseinov G. Sh., Dokl. AN AzSSR, 37:2 (1981), 19–23 | MR | Zbl

[6] Pivovarchik V. N., “An inverse Sturm–Liouville problem by three spectra”, Integral Equations Operator Theory, 34:2 (1999), 234–243 | DOI | MR

[7] Gesztesy F., Simon B., “On the determination of a potential from three spectra”, Differential operators and spectral theory, Birman Birthday Volume in Advances in Mathematical Sciences, eds. V. Buslaev and M. Solomyak, Amer. Math. Soc., Providence, RI, 1999, 85–92 | MR | Zbl

[8] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[9] Levin B. Ya., Lectures on entire functions, Transl. Math. Monographs, 150, 1996 | DOI | MR

[10] Levitan B. M., Gasymov M. G., “Opredelenie differentsialnogo uravneniya po dvum spektram”, UMN, 19:2(116) (1964), 3–63 | MR | Zbl

[11] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR