Certain New Robust Properties of Invariant Sets and Attractors of Dynamical Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 2, pp. 16-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1999_33_2_a1,
     author = {A. S. Gorodetski and Yu. S. Ilyashenko},
     title = {Certain {New} {Robust} {Properties} of {Invariant} {Sets} and {Attractors} of {Dynamical} {Systems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {16--30},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_2_a1/}
}
TY  - JOUR
AU  - A. S. Gorodetski
AU  - Yu. S. Ilyashenko
TI  - Certain New Robust Properties of Invariant Sets and Attractors of Dynamical Systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1999
SP  - 16
EP  - 30
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1999_33_2_a1/
LA  - ru
ID  - FAA_1999_33_2_a1
ER  - 
%0 Journal Article
%A A. S. Gorodetski
%A Yu. S. Ilyashenko
%T Certain New Robust Properties of Invariant Sets and Attractors of Dynamical Systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1999
%P 16-30
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1999_33_2_a1/
%G ru
%F FAA_1999_33_2_a1
A. S. Gorodetski; Yu. S. Ilyashenko. Certain New Robust Properties of Invariant Sets and Attractors of Dynamical Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 2, pp. 16-30. http://geodesic.mathdoc.fr/item/FAA_1999_33_2_a1/

[1] Arnold L., “Random dynamical systems”, Lect. Notes in Math., 1609, 1995, 1–43 | DOI | MR | Zbl

[2] Yuan G. Ch., Yorke J. A., “An open set of maps for which every point is absolutely nonshadowable”, Proc. Amer. Math. Soc. (to appear) | MR

[3] Shub M., “Topologically transitive diffeomorphisms on $T^4$”, Lect. Notes in Math., 206, 1971, 39 | DOI

[4] Mané R., “Contributions to the stability conjecture”, Topology, 17 (1978), 383–396 | DOI | MR | Zbl

[5] Bonatti C., Diaz L. J., “Persistent nonhyperbolic transitive diffeomorphisms”, Ann. of Math. (2), 143:2 (1996), 357–396 | DOI | MR | Zbl

[6] Diaz L. J., Pujals E., Ures R., Normal hyperbolicity and robust transitivity, Preprint PUC-Rio, 1997 | MR

[7] Bonatti C., Viana M., SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Preprint IMPA, 1997 | MR | Zbl

[8] Viana M., Dynamics: a Probabilistic and Geometric Perspective, Extra Volume ICM-98, Berlin, 1998 | MR

[9] Kostelich E. J., Kan Ittai, Grebogi C., Ott E., Yorke J., “Unstable dimention variability: A source of nonhyperbolicity in chaotic systems”, Physica D, 109 (1997), 81–90 | DOI | MR | Zbl

[10] Dawson S., Grebogi C., Sauer T., Yorke J., “Obstructions to Shadowing When a Lyapunov Exponent Fluctuates about Zero”, Phys. Rev. Lett., 73:14 (1994), 1927–1930 | DOI

[11] Hirsh M., Pugh C., Shub M., Invariant manifolds, Lect. Notes in Math., 583, Springer-Verlag, Berlin, 1977 | DOI | MR

[12] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Cambridge University Press, 1995 | MR

[13] Nitica V., Török A., “Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher-rank lattices”, Duke Math. J., 79:3 (1995), 751–810 | DOI | MR | Zbl

[14] Ilyashenko Yu., Li W., Nonlocal bifurcations, Amer. Math. Soc., Providence, Long Island, 1998 | MR | Zbl

[15] Grayson M., Pugh C., Shub M., “Stably ergodic diffeomorphisms”, Ann. of Math. (2), 140:2 (1994), 295–329 | DOI | MR | Zbl

[16] Field M., Parry W., “Stable ergodicity of skew extentions by compact Lie groups”, Topology, 38:1 (1999), 167–187 | DOI | MR | Zbl