@article{FAA_1999_33_1_a7,
author = {A. V. Loboda},
title = {On the {Dimension} of a {Group} {Transitively} {Acting} on a {Hypersurface} in $\mathbb{C}^3$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {68--71},
year = {1999},
volume = {33},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_1_a7/}
}
A. V. Loboda. On the Dimension of a Group Transitively Acting on a Hypersurface in $\mathbb{C}^3$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 1, pp. 68-71. http://geodesic.mathdoc.fr/item/FAA_1999_33_1_a7/
[1] Cartan E., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl. (4), 11 (1933), 17–90 | DOI | MR
[2] Chern S. S., Molinebreakser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3 (1974), 219–271 | DOI | MR
[3] Burns D., Shneider S., Wells R. O., “Deformations of strictly pseudoconvex domains”, Invent. Math., 46:3 (1978), 237–253 | DOI | MR | Zbl
[4] Webster S. M., “On the Moser normal form at a non-umbilic point”, Math. Ann., 233 (1978), 97–102 | DOI | MR | Zbl
[5] Ezhov V. V., “Linearizatsiya gruppy stabilnosti odnogo klassa giperpoverkhnostei”, UMN, 41:3 (1986), 181–182 | MR | Zbl
[6] Winkelmann J., The classification of $3$-dimensional homogeneous complex manifolds, Lect. Notes in Math., 1602, Springer-Verlag, 1995 | DOI | MR | Zbl