Exponential Stability of the Approximate Principal Mode of the Nonlinear Wave Equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 1, pp. 80-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1999_33_1_a10,
     author = {N. N. Nekhoroshev},
     title = {Exponential {Stability} of the {Approximate} {Principal} {Mode} of the {Nonlinear} {Wave} {Equation}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {80--83},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_1_a10/}
}
TY  - JOUR
AU  - N. N. Nekhoroshev
TI  - Exponential Stability of the Approximate Principal Mode of the Nonlinear Wave Equation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1999
SP  - 80
EP  - 83
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1999_33_1_a10/
LA  - ru
ID  - FAA_1999_33_1_a10
ER  - 
%0 Journal Article
%A N. N. Nekhoroshev
%T Exponential Stability of the Approximate Principal Mode of the Nonlinear Wave Equation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1999
%P 80-83
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1999_33_1_a10/
%G ru
%F FAA_1999_33_1_a10
N. N. Nekhoroshev. Exponential Stability of the Approximate Principal Mode of the Nonlinear Wave Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 1, pp. 80-83. http://geodesic.mathdoc.fr/item/FAA_1999_33_1_a10/

[1] Bambusi D., Giorgilli A., “Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems”, J. Statist. Phys., 71 (1993), 569–606 | DOI | MR | Zbl

[2] Bambusi D., Nekhoroshev N. N., “A property of exponential stability in nonlinear wave equations near the fundamental linear mode”, Phys. D, 122 (1998), 73–104 | DOI | MR | Zbl

[3] Craig W., Wayne C. E., “Newton's method and periodic solutions of nonlinear wave equations”, Comm. Pure Appl. Math., 46 (1993), 1409–1501 | DOI | MR

[4] Kuksin S. B., Lect. Notes Math., 1556, Springer-Verlag, 1994

[5] Rabinowitz P. H., “Free vibrations for a semilinear wave equation”, Comm. Pure Appl. Math., 31 (1978), 31–68 | DOI | MR | Zbl