Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1999_33_1_a10, author = {N. N. Nekhoroshev}, title = {Exponential {Stability} of the {Approximate} {Principal} {Mode} of the {Nonlinear} {Wave} {Equation}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {80--83}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_1_a10/} }
TY - JOUR AU - N. N. Nekhoroshev TI - Exponential Stability of the Approximate Principal Mode of the Nonlinear Wave Equation JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1999 SP - 80 EP - 83 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1999_33_1_a10/ LA - ru ID - FAA_1999_33_1_a10 ER -
N. N. Nekhoroshev. Exponential Stability of the Approximate Principal Mode of the Nonlinear Wave Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 1, pp. 80-83. http://geodesic.mathdoc.fr/item/FAA_1999_33_1_a10/
[1] Bambusi D., Giorgilli A., “Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems”, J. Statist. Phys., 71 (1993), 569–606 | DOI | MR | Zbl
[2] Bambusi D., Nekhoroshev N. N., “A property of exponential stability in nonlinear wave equations near the fundamental linear mode”, Phys. D, 122 (1998), 73–104 | DOI | MR | Zbl
[3] Craig W., Wayne C. E., “Newton's method and periodic solutions of nonlinear wave equations”, Comm. Pure Appl. Math., 46 (1993), 1409–1501 | DOI | MR
[4] Kuksin S. B., Lect. Notes Math., 1556, Springer-Verlag, 1994
[5] Rabinowitz P. H., “Free vibrations for a semilinear wave equation”, Comm. Pure Appl. Math., 31 (1978), 31–68 | DOI | MR | Zbl