The Packing Constant in Rearrangement-Invariant Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 4, pp. 69-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1998_32_4_a6,
     author = {J. Appell and E. M. Semenov},
     title = {The {Packing} {Constant} in {Rearrangement-Invariant} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {69--72},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_4_a6/}
}
TY  - JOUR
AU  - J. Appell
AU  - E. M. Semenov
TI  - The Packing Constant in Rearrangement-Invariant Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1998
SP  - 69
EP  - 72
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1998_32_4_a6/
LA  - ru
ID  - FAA_1998_32_4_a6
ER  - 
%0 Journal Article
%A J. Appell
%A E. M. Semenov
%T The Packing Constant in Rearrangement-Invariant Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1998
%P 69-72
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1998_32_4_a6/
%G ru
%F FAA_1998_32_4_a6
J. Appell; E. M. Semenov. The Packing Constant in Rearrangement-Invariant Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 4, pp. 69-72. http://geodesic.mathdoc.fr/item/FAA_1998_32_4_a6/

[1] Kottman C. A., “Packing and reflexivity in Banach spaces”, Trans. Am. Math. Soc., 150 (1970), 565–576 | DOI | MR | Zbl

[2] Rankin R. A., “The closest packing of spherical caps in $n$ dimensions”, Proc. Glasgow Math. Assoc., 2 (1955), 139–144 | DOI | MR | Zbl

[3] Burlak J. A. C., Rankin R. A., Robertson A. P., “The packing of spheres in the space $l_{p}$”, Proc. Glasgow Math. Assoc., 4 (1958), 22–25 | DOI | MR | Zbl

[4] Wells J. H., Williams L. R., Imbeddings and extensions in analysis, Springer-Verlag, Berlin, 1975 | MR | Zbl

[5] Hudzik H., Collect. Math., 44 (1993), 131–135 | MR

[6] Clever C. E., Pacific J. Math., 65 (1976), 325–335 | DOI | MR

[7] Rao M. M., Ren Z. D., Theory of Orlicz spaces, M. Dekker, NY, 1991 | MR | Zbl

[8] Hudzik H., Landes T., “Packing constant in Orlicz spaces equipped with the Luxemburg norm”, Boll. Un. Mat. Ital. A (7), 9 (1995), 225–237 | MR | Zbl

[9] Rao M. M., Ren Z. D., Studia Math., 126:3 (1997), 235–251 | DOI | MR

[10] Ball K., “Inequalities and sphere-packing in $l_p$”, Israel J. Math., 59 (1987), 243–256 | DOI | MR

[11] Elton J., Odell E., “The unit ball of every infinite-dimensional normed linear space contains a $(1+\varepsilon)$-separated sequence”, Colloq. Math., 44 (1981), 105–109 | DOI | MR | Zbl

[12] Lindenstrauss J., Tzafriri L., Classical Banach spaces. Function spaces, II, Springer-Verlag, Berlin, 1979 | MR

[13] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[14] Pisier G. J., “Some applications of the complex interpolation method to Banach lattices”, d'Analyse Math., 35 (1979), 264–281 | DOI | MR | Zbl

[15] Franchetti C., Semenov E. M., “The Jung constant in rearrangement invariant spaces”, C. R. Acad. Sci. Paris, 323 (1996), 723–728 | MR | Zbl

[16] Carothers N. L., Dilworth S. J., “Geometry of Lorentz spaces via interpolation”, Texas Func. Anal. Sem. 1985–1986, 1986, 107–133, Univ. Texas, Austin, TX | MR

[17] Figiel T., Johnson W. B., Tzafriri L. J., “On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces”, Approx. Theory, 13 (1975), 395–412 | DOI | MR | Zbl