On an Invariant Measure for Homeomorphisms of a Circle with a Point of Break
Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 3, pp. 11-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1998_32_3_a1,
     author = {A. A. Dzhalilov and K. M. Khanin},
     title = {On an {Invariant} {Measure} for {Homeomorphisms} of a {Circle} with a {Point} of {Break}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {11--21},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_3_a1/}
}
TY  - JOUR
AU  - A. A. Dzhalilov
AU  - K. M. Khanin
TI  - On an Invariant Measure for Homeomorphisms of a Circle with a Point of Break
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1998
SP  - 11
EP  - 21
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1998_32_3_a1/
LA  - ru
ID  - FAA_1998_32_3_a1
ER  - 
%0 Journal Article
%A A. A. Dzhalilov
%A K. M. Khanin
%T On an Invariant Measure for Homeomorphisms of a Circle with a Point of Break
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1998
%P 11-21
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1998_32_3_a1/
%G ru
%F FAA_1998_32_3_a1
A. A. Dzhalilov; K. M. Khanin. On an Invariant Measure for Homeomorphisms of a Circle with a Point of Break. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 3, pp. 11-21. http://geodesic.mathdoc.fr/item/FAA_1998_32_3_a1/

[1] Denjoy A., “Sur les courbes definies par les equations differentielles a la surface du tore”, J. Math. Pures Appl., 11 (1932), 333–375 | MR | Zbl

[2] Arnold V. I., “Malye znamenateli I: Ob otobrazheniyakh okruzhnosti na sebya”, Izv. AN SSSR, ser. mat., 25:1 (1961), 21–86 | MR

[3] Moser J., “A rapidly convergent iteration method, Part II”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 20 (1966), 499–535 | MR

[4] Herman M., “Sur la conjugaison différentiable des diféomorphisims du cercle a des rotations”, Publ. Math. IHES, 49 (1979), 5–233 | DOI | MR | Zbl

[5] Herman M., “Résultats récents sur la conjugaison différentiable”, Proc. Intern. Cong. Math. (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, 811–820 | MR

[6] Yoccoz J. C., “Conjugaison différentiable des diféomorphisims du cercle dont la mombre de rotation vérifie une condition diophantienne”, Ann. Sci. École Norm. Sup. (4), 17 (1984), 333–359 | DOI | MR | Zbl

[7] Khanin K. M., Sinai Ya. G., “A new proof of M. Herman's theorem”, Comm. Math. Phys., 112 (1987), 89–101 | DOI | MR | Zbl

[8] Sinai Ya. G., Khanin K. M., “Gladkost sopryazhenii diffeomorfizmov okruzhnosti s povorotami”, UMN, 44:1(265) (1989), 57–81 | MR

[9] Katznelson Y., Ornstein D., “The differentiability of the conjugation of certain diffeomorphisms of the circle”, Ergodic Theory Dynam. Systems, 9:4 (1989), 643–680 | DOI | MR | Zbl

[10] Stark J., “Smooth conjugacy and renormalization for diffeomorphisms of the circle”, Nonlinearity, 1 (1988), 541–575 | DOI | MR | Zbl

[11] Poincaré H., “Memoire sur les courbes definie par une equation differentieble I–IV”, J. Math. Pures Appl., 1881–1886; O krivykh, opredelyaemykh differentsialnymi uravneniyami, Gostekhizdat, M.-L., 1947

[12] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[13] Khanin K. M., Vul E. B., “Circle homeomorphisms with weak discontinuties”, Adv. Sov. Math., 3 (1991), 57–98 | MR | Zbl

[14] Khanin K. M., “Universal estimates for critical circle mappings”, Chaos, 1 (1991), 181 | DOI | MR | Zbl