Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1998_32_3_a0, author = {A. M. Vershik and S. V. Kerov}, title = {On an {Infinite-Dimensional} {Group} over a {Finite} {Field}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--10}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_3_a0/} }
A. M. Vershik; S. V. Kerov. On an Infinite-Dimensional Group over a Finite Field. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 3, pp. 3-10. http://geodesic.mathdoc.fr/item/FAA_1998_32_3_a0/
[1] Vershik A. M., Kerov S. V., “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K_0$-funktor”, Itogi nauki i tekhniki. Sovr. probl. matematiki. Noveishie dostizheniya, 26, VINITI, 1985, 3–56 | MR
[2] Vershik A. M., Kerov S. V., “Kharaktery i realizatsii predstavlenii beskonechnomernoi algebry Gekke i invarianty uzlov”, DAN SSSR, 301:4 (1988), 777–780 | MR
[3] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR
[4] Makdonald I., Simmetricheskie funktsii i polinomy Kholla, Mir, M., 1985 | MR
[5] Faddeev D. K., “Kompleksnye predstavleniya polnoi lineinoi gruppy nad konechnym polem”, Zapiski nauchn. seminarov LOMI, 46, 1974, 64–88 | MR | Zbl
[6] Green J. A., “The characters of the finite general linear groups”, Trans. Amer. Math. Soc., 80 (1955), 402–447 | DOI | MR | Zbl
[7] Skudlarek H. L., “Die unzerlegbaren Charaktere einiger diskreter Gruppen”, Math. Ann., 223 (1976), 213–231 | DOI | MR | Zbl
[8] Thoma E., “Die Einschränkung der Charactere von $GL(n,q)$ auf $GL(n-1,q)$”, Math. Z., 119 (1971), 321–338 | DOI | MR
[9] Kerov S., Vershik A., “The Grothendieck group of the infinite symmetric group and symmetric functions with the elements of the $K_0$-functor theory of $AF$-algebras”, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 39–117 | MR
[10] Zelevinsky A. V., “Representations of finite classical groups”, Lecture Notes in Math., 869, 1981, 1–184 | DOI | MR