Singularities of the Green Function of the Nonstationary Schr\"odinger Equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 2, pp. 80-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1998_32_2_a5,
     author = {M. V. Buslaeva and V. S. Buslaev},
     title = {Singularities of the {Green} {Function} of the {Nonstationary} {Schr\"odinger} {Equation}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {80--83},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_2_a5/}
}
TY  - JOUR
AU  - M. V. Buslaeva
AU  - V. S. Buslaev
TI  - Singularities of the Green Function of the Nonstationary Schr\"odinger Equation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1998
SP  - 80
EP  - 83
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1998_32_2_a5/
LA  - ru
ID  - FAA_1998_32_2_a5
ER  - 
%0 Journal Article
%A M. V. Buslaeva
%A V. S. Buslaev
%T Singularities of the Green Function of the Nonstationary Schr\"odinger Equation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1998
%P 80-83
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1998_32_2_a5/
%G ru
%F FAA_1998_32_2_a5
M. V. Buslaeva; V. S. Buslaev. Singularities of the Green Function of the Nonstationary Schr\"odinger Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 2, pp. 80-83. http://geodesic.mathdoc.fr/item/FAA_1998_32_2_a5/

[1] Zeldich S., Comm. Math. Phys., 90 (1983), 1–26 | DOI | MR

[2] Craig W., Kapeller T., Strauss W., Microlocal dispersive smoothing for the Schroedinger equation, Preprint, 1996 | MR

[3] Yajima K., Smoothness and nonsmoothness of the fundamental solution for initial value problem for time-dependent Schroedinger equations, Preprint, 1995 | MR

[4] Kapitanski L., Rodnianski I., “Regulated smoothing for Schrodinger evolution”, IMRN, 1996, no. 2, 41–54 | DOI | MR | Zbl

[5] Kapitanski L., Rodnianski I., Yajima K., On the fundamental solution of a perturbed harmonic oscillator, Preprint, 1996 | MR

[6] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[7] Buslaev V. S., Funkts. analiz i ego pril., 3:3 (1969), 17–31 | MR | Zbl

[8] Montgomery H. L., Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS, Regional Conference Series in Math., 84, Am. Math. Soc., 1994 | DOI | MR | Zbl