@article{FAA_1998_32_2_a2,
author = {S. M. Gusein-Zade and I. Luengo and A. Melle-Hern\'andez},
title = {Zeta {Functions} for {Germs} of {Meromorphic} {Functions,} and {Newton} {Diagrams}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {26--35},
year = {1998},
volume = {32},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_2_a2/}
}
TY - JOUR AU - S. M. Gusein-Zade AU - I. Luengo AU - A. Melle-Hernández TI - Zeta Functions for Germs of Meromorphic Functions, and Newton Diagrams JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1998 SP - 26 EP - 35 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/FAA_1998_32_2_a2/ LA - ru ID - FAA_1998_32_2_a2 ER -
S. M. Gusein-Zade; I. Luengo; A. Melle-Hernández. Zeta Functions for Germs of Meromorphic Functions, and Newton Diagrams. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 2, pp. 26-35. http://geodesic.mathdoc.fr/item/FAA_1998_32_2_a2/
[1] A'Campo N., “La fonction zêta d'une monodromie”, Comm. Math. Helv., 50 (1975), 233–248 | DOI | MR
[2] Arnold V. I., Osobennosti drobei i povedenie mnogochlenov na beskonechnosti, Trudy MIRAN, 221, 1998 | MR | Zbl
[3] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, t. 2, Nauka, M., 1984 | MR
[4] Bernshtein D. N., “Chislo kornei sistemy uravnenii”, Funkts. analiz i ego pril., 9:3 (1975), 1–4 | MR | Zbl
[5] Gusein-Zade S. M., Luengo I., Melle-Hernández A., “Partial resolutions and the zeta-function of a singularity”, Comm. Math. Helv., 72 (1997), 244–256 | DOI | MR | Zbl
[6] Khovanskii A. G., “Mnogogranniki Nyutona i toricheskie mnogoobraziya”, Funkts. analiz i ego pril., 11:4 (1977), 56–67 | MR
[7] Khovanskii A. G., “Mnogogranniki Nyutona i rod polnykh peresechenii”, Funkts. analiz i ego pril., 12:1 (1978), 51–61 | MR
[8] Oka M., “Principal zeta-function of non-degenerate complete intersection singularity”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 37 (1990), 11–32 | MR | Zbl
[9] Varchenko A. N., “Zeta function of monodromy and Newton's diagram”, Invent. Math., 37 (1976), 253–262 | DOI | MR | Zbl