Algebraic Integrability of the Two-Body Ruijsenaars Operator
Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 2, pp. 8-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1998_32_2_a1,
     author = {A. N. Varchenko and G. Felder},
     title = {Algebraic {Integrability} of the {Two-Body} {Ruijsenaars} {Operator}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {8--25},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_2_a1/}
}
TY  - JOUR
AU  - A. N. Varchenko
AU  - G. Felder
TI  - Algebraic Integrability of the Two-Body Ruijsenaars Operator
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1998
SP  - 8
EP  - 25
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1998_32_2_a1/
LA  - ru
ID  - FAA_1998_32_2_a1
ER  - 
%0 Journal Article
%A A. N. Varchenko
%A G. Felder
%T Algebraic Integrability of the Two-Body Ruijsenaars Operator
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1998
%P 8-25
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1998_32_2_a1/
%G ru
%F FAA_1998_32_2_a1
A. N. Varchenko; G. Felder. Algebraic Integrability of the Two-Body Ruijsenaars Operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 2, pp. 8-25. http://geodesic.mathdoc.fr/item/FAA_1998_32_2_a1/

[1] Braverman A., Etingof P., Gaitsgory D., Differential Galois Groups and Algebraic Integrability of Quantum Integrable Systems, arXiv: /Alg-geom/9607012

[2] Chalykh O., Veselov A., “Commutative rings of differential operators and Lie algebras”, Commun. Math. Phys., 126 (1990), 597–611 | DOI | MR | Zbl

[3] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31 (1976), 55–136 | MR | Zbl

[4] Felder G., Varchenko A., “Algebraic Bethe ansatz for the elliptic quantum group $E_{\tau,\eta}(sl_2)$”, Nucl. Phys. B, 480 (1996), 485–503 | DOI | MR | Zbl

[5] Krichever I. M., “Algebraicheskie krivye i nelineinye raznostnye uravneniya”, UMN, 33:4 (1978), 215–216 | MR | Zbl

[6] Krichever I. M., Novikov S. P., “Algebry tipa Virasoro, rimanovy poverkhnosti i struktury teorii solitonov”, Funkts. analiz i pril., 21:2 (1987), 46–63 | MR | Zbl

[7] Krichever I., Zabrodin A., Spin Generalization of the Ruijsenaars–Schneider Molinebreak del Non-Abelian 2D Toda Chain and Representations of Sklyanin Algebra, arXiv: /hep-th/9505039 | MR

[8] Mamford D., “Algebro-geometric constraction of commuting operators and of solutions of the Toda latticeequation, Korteweg-de Vries equation andrelated non-linear equations”, Proc. Intern. Symp. Algebraic Geometry (Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, 115–153 | MR

[9] Ruijsenaars S. N. M., “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Commun. Math. Phys., 110 (1987), 191–213 | DOI | MR | Zbl

[10] Sklyanin E. K., “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniyami Yanga–Bakstera. Predstavleniya kvantovoi algebry”, Funkts. analiz i ego pril., 17:4 (1983), 34–48 | MR | Zbl

[11] Verlinde E., “Fusion rules and modular transformations in 2D conformal field theory”, Nucl. Phys. B, 300 (1987), 360–376 | DOI | MR

[12] Whittaker E. T., Watson G. N., A Course of Modern Analysis, Cambridge University Press, 1915 | MR | Zbl