Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1998_32_2_a0, author = {V. I. Arnol'd}, title = {Towards the {Legendre} {Sturm} {Theory} of {Space} {Curves}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--7}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_2_a0/} }
V. I. Arnol'd. Towards the Legendre Sturm Theory of Space Curves. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 2, pp. 1-7. http://geodesic.mathdoc.fr/item/FAA_1998_32_2_a0/
[1] Scherbak O. P., “Proektivno dvoistvennye prostranstvennye krivye i lagranzhevy osobennosti”, Trudy Tbilisskogo univ., 232/233, 1982, 280–336 | MR | Zbl
[2] Arnold V. I., “Wave front evolution and equivariant Morse lemma”, Comm. Pure Appl. Math., 29:6 (1976), 557–582 | DOI | MR
[3] Arnold V. I., “On the number of flattening points on space curves: Ya. G. Sinai's Moscow Seminar on Dynamical System”, Am. Math. Soc. Transl., Ser. 2, 171, Providence, 1995, 11–22 | MR
[4] Barner M., “Über die Mindestanzahl stationären Schmeigebenen bei geschlossenen strengkonvexen Raumkurven”, Abh. Math. Sem. Univ. Hamburg, 20, 1956, 196–215 | DOI | MR | Zbl
[5] Arnold V., Singularities of Caustics and Wave Fronts, Kluwer, Dordrecht, 1990 | MR
[6] Nun̆o Ballesteros J. J., Romero Fuster M. C., “Global bitangency properties of generic closed space curves”, Math. Proc. Cambridge Philos. Soc., 112 (1992), 519–526 | DOI | MR | Zbl
[7] Vasilev V. A., “Samoperesecheniya volnovykh frontov i lagranzhevy (lezhandrovy) kharakteristicheskie chisla”, Funkts. analiz i ego pril., 16:2 (1982), 68–69 | MR