Strict Deformation Quantization on a Pseudo-K\"ahler Orbit of a Compact Lie Group
Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 1, pp. 66-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1998_32_1_a7,
     author = {A. V. Karabegov},
     title = {Strict {Deformation} {Quantization} on a {Pseudo-K\"ahler} {Orbit} of a {Compact} {Lie} {Group}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {66--68},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a7/}
}
TY  - JOUR
AU  - A. V. Karabegov
TI  - Strict Deformation Quantization on a Pseudo-K\"ahler Orbit of a Compact Lie Group
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1998
SP  - 66
EP  - 68
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a7/
LA  - ru
ID  - FAA_1998_32_1_a7
ER  - 
%0 Journal Article
%A A. V. Karabegov
%T Strict Deformation Quantization on a Pseudo-K\"ahler Orbit of a Compact Lie Group
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1998
%P 66-68
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a7/
%G ru
%F FAA_1998_32_1_a7
A. V. Karabegov. Strict Deformation Quantization on a Pseudo-K\"ahler Orbit of a Compact Lie Group. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 1, pp. 66-68. http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a7/

[1] Weinstein A., “Deformation quantization”, Astérisque, 227, 1995, 389–409 | MR | Zbl

[2] Karabegov A. V., Trans. Am. Math. Soc., 1998 (to appear) | MR

[3] Bayen F. et al., Ann. Phys., 111:1 (1978), 111–151 | DOI | MR | Zbl

[4] Karabegov A. V., “O deformatsionnom kvantovanii na kelerovom mnogoobrazii, svyazannom s kvantovaniem Berezina”, Funkts. analiz i ego pril., 30:2 (1996), 87–89 | DOI | MR | Zbl

[5] Berezin F. A., “Kvantovanie”, Izv. AN SSSR, ser. matem., 38 (1974), 1116–1175 | MR | Zbl

[6] Cahen M., Gutt S., Rawnsley J. H., “Quantization of Kahler manifolds, II”, Trans. Am. Math. Soc., 337:1 (1993), 73–98 | DOI | MR | Zbl