Strict Deformation Quantization on a Pseudo-Kähler Orbit of a Compact Lie Group
Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 1, pp. 66-68
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1998_32_1_a7,
author = {A. V. Karabegov},
title = {Strict {Deformation} {Quantization} on a {Pseudo-K\"ahler} {Orbit} of a {Compact} {Lie} {Group}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {66--68},
year = {1998},
volume = {32},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a7/}
}
A. V. Karabegov. Strict Deformation Quantization on a Pseudo-Kähler Orbit of a Compact Lie Group. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 1, pp. 66-68. http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a7/
[1] Weinstein A., “Deformation quantization”, Astérisque, 227, 1995, 389–409 | MR | Zbl
[2] Karabegov A. V., Trans. Am. Math. Soc., 1998 (to appear) | MR
[3] Bayen F. et al., Ann. Phys., 111:1 (1978), 111–151 | DOI | MR | Zbl
[4] Karabegov A. V., “O deformatsionnom kvantovanii na kelerovom mnogoobrazii, svyazannom s kvantovaniem Berezina”, Funkts. analiz i ego pril., 30:2 (1996), 87–89 | DOI | MR | Zbl
[5] Berezin F. A., “Kvantovanie”, Izv. AN SSSR, ser. matem., 38 (1974), 1116–1175 | MR | Zbl
[6] Cahen M., Gutt S., Rawnsley J. H., “Quantization of Kahler manifolds, II”, Trans. Am. Math. Soc., 337:1 (1993), 73–98 | DOI | MR | Zbl