@article{FAA_1998_32_1_a4,
author = {S. M. Arkhipov},
title = {Semi-Infinite {Cohomology} of {Small} {Quantum} {Groups}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {54--58},
year = {1998},
volume = {32},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a4/}
}
S. M. Arkhipov. Semi-Infinite Cohomology of Small Quantum Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 1, pp. 54-58. http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a4/
[1] Andersen H. H., Jantzen J. C., Soergel W., Representations of quantum groups at $p$ th roots of unity and of semisimple groups in characteristic $p$: independence of $p$, Asterisque, 220, 1994 | MR | Zbl
[2] Arkhipov S., Semi-infinite cohomology of quantum groups, , 1996 arXiv: /q-alg/9601026 | MR
[3] Arkhipov S., Semi-infinite cohomology of associative algebras and bar duality, , 1996 arXiv: /q-alg/9602013 | MR
[4] Arkhipov S., Semi-infinite cohomology of quantum groups, II, , 1996 arXiv: /q-alg/9610043 | MR
[5] Ginzburg V., Kumar N., “Cohomology of quantum groups at roots of unity”, Duke Math. J., 69 (1993), 179–198 | DOI | MR | Zbl
[6] Kempf G., “The Grothendieck-Cousin complex of an induced representation”, Adv. in Math., 29 (1978), 310–396 | DOI | MR | Zbl
[7] Lusztig G., Introduction to Quantum Groups, Progress in Mathematics, 110, Birkhäuser, Boston etc., 1993 | MR | Zbl
[8] Lusztig G., “Quantum groups at roots of $1$”, Geom. Dedicata, 35 (1990), 89–113 | DOI | MR