Special Flows Constructed From Countable Topological Markov Chains
Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 1, pp. 40-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1998_32_1_a3,
     author = {S. V. Savchenko},
     title = {Special {Flows} {Constructed} {From} {Countable} {Topological} {Markov} {Chains}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {40--53},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a3/}
}
TY  - JOUR
AU  - S. V. Savchenko
TI  - Special Flows Constructed From Countable Topological Markov Chains
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1998
SP  - 40
EP  - 53
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a3/
LA  - ru
ID  - FAA_1998_32_1_a3
ER  - 
%0 Journal Article
%A S. V. Savchenko
%T Special Flows Constructed From Countable Topological Markov Chains
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1998
%P 40-53
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a3/
%G ru
%F FAA_1998_32_1_a3
S. V. Savchenko. Special Flows Constructed From Countable Topological Markov Chains. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 1, pp. 40-53. http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a3/

[1] Abramov L. M., “Ob entropii potoka”, DAH SSSR, 128:5 (1959), 873–875 | MR | Zbl

[2] Parry W., Pollicott M., Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187–188, 1990 | MR | Zbl

[3] Krengel U., “Entropy of conservative transformations”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 7 (1967), 161–181 | DOI | MR | Zbl

[4] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMH, 25:1 (1970), 113–185 | MR

[5] Bowen R., Ruelle D., “The ergodic theory of Axiom A flows”, Invent. Math., 29 (1975), 181–202 | DOI | MR | Zbl

[6] Bunimovich L. A., Sinai Ya. G., Chernov H. I., “Markovskie razbieniya dlya dvumernykh giperbolicheskikh billiardov”, UMH, 45:3 (1990), 97–134 | MR | Zbl

[7] Sinai Ya. G., Vvedenie v ergodicheskuyu teoriyu, Seriya BSM. Vyp. 1, Fazis, M., 1996

[8] Ruelle D., “Generalized zeta-functions for axiom A basic sets”, Bull. Am. Mats. Soc., 82 (1976), 153–156 | DOI | MR | Zbl

[9] Parry W., Pollicott M., “An analogue of the primenumber theorem and closed orbits of Axiom A flows”, Annals of Math., 118 (1983), 573–591 | DOI | MR | Zbl

[10] Huber H., “Zur analytischen Theorie hyperbolischer Raum formen und Bewegungsgruppen, II”, Math. Ann., 142 (1961), 385–398 | DOI | MR | Zbl

[11] Savchenko S. V., “Periodicheskie tochki schetnykh topologicheskikh markovskikh tsepei”, Matem. sb., 186:10 (1995), 103–140 | MR | Zbl

[12] Bowen R., Walters P., “Expansive one-parameter flows”, J. Differential Equations, 12 (1972), 180–193 | DOI | MR | Zbl

[13] Savchenko S. V., “Ravnovesnye sostoyaniya s nepolnymi nositelyami i periodicheskie traektorii”, Matem. zametki, 59:2 (1996), 230–253 | DOI | MR | Zbl

[14] Parry W., “Ergodic and spectral analysis of certain infinite measure preserving transformations”, Proc. Am. Math. Soc., 16 (1965), 960–966 | DOI | MR | Zbl

[15] Sucheston L., “A note on conservative transformations and the recurrence theorem”, Amer. J. Math., 79 (1957), 444–447 | DOI | MR | Zbl

[16] Kolmogorov A. H., “Novyi metricheskii invariant tranzitivnykh dinamicheskikh sistem i avtomorfizmov prostranstv Lebega”, DAH SSSR, 119:5 (1958), 861–864 | MR | Zbl

[17] Rokhlin V. A., “Lektsii po entropiinoi teorii preobrazovanii s invariantnoi meroi”, UMH, 22:5 (1967), 3–56 | MR | Zbl

[18] Abramov L. M., “Ob entropii proizvodnogo avtomorfizma”, DAH SSSR, 128:4 (1959), 647–650 | MR | Zbl

[19] Gurevich B. M., “A variational characterization of one-dimensional countable state Gibbs random fields”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 68 (1984), 205–242 | DOI | MR | Zbl