Tightenable Curves and the M\"obius Theorem on Three Points of Inflection
Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 1, pp. 29-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1998_32_1_a2,
     author = {D. A. Panov},
     title = {Tightenable {Curves} and the {M\"obius} {Theorem} on {Three} {Points} of {Inflection}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a2/}
}
TY  - JOUR
AU  - D. A. Panov
TI  - Tightenable Curves and the M\"obius Theorem on Three Points of Inflection
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1998
SP  - 29
EP  - 39
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a2/
LA  - ru
ID  - FAA_1998_32_1_a2
ER  - 
%0 Journal Article
%A D. A. Panov
%T Tightenable Curves and the M\"obius Theorem on Three Points of Inflection
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1998
%P 29-39
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a2/
%G ru
%F FAA_1998_32_1_a2
D. A. Panov. Tightenable Curves and the M\"obius Theorem on Three Points of Inflection. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 1, pp. 29-39. http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a2/

[1] Sasaki S., “The minimum number of points of inflection of closed curves in the projectiv plane”, Tohoku Math. J., 9:2 (1957), 113–117 | DOI | MR | Zbl

[2] Arnold V. I., “Geometriya sfericheskikh krivykh i algebra kvaternionov”, UMN, 50:1(301) (1995), 3–68 | MR | Zbl

[3] Arnold V. I., Vasilev V. A., Goryunov V. V., Lyashko O. V., “Osobennosti, I. Lokalnaya i globalnaya teoriya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 6, VINITI, M., 1988, 5–250

[4] Umehara M., “6-Vertex theorem for closed planar curve which bounds an immersed surface with non-zero genus”, Nagoya Math. J., 134 (1994), 75–89 | DOI | MR | Zbl