Tightenable Curves and the Möbius Theorem on Three Points of Inflection
Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 1, pp. 29-39
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1998_32_1_a2,
author = {D. A. Panov},
title = {Tightenable {Curves} and the {M\"obius} {Theorem} on {Three} {Points} of {Inflection}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {29--39},
year = {1998},
volume = {32},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a2/}
}
D. A. Panov. Tightenable Curves and the Möbius Theorem on Three Points of Inflection. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 1, pp. 29-39. http://geodesic.mathdoc.fr/item/FAA_1998_32_1_a2/
[1] Sasaki S., “The minimum number of points of inflection of closed curves in the projectiv plane”, Tohoku Math. J., 9:2 (1957), 113–117 | DOI | MR | Zbl
[2] Arnold V. I., “Geometriya sfericheskikh krivykh i algebra kvaternionov”, UMN, 50:1(301) (1995), 3–68 | MR | Zbl
[3] Arnold V. I., Vasilev V. A., Goryunov V. V., Lyashko O. V., “Osobennosti, I. Lokalnaya i globalnaya teoriya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 6, VINITI, M., 1988, 5–250
[4] Umehara M., “6-Vertex theorem for closed planar curve which bounds an immersed surface with non-zero genus”, Nagoya Math. J., 134 (1994), 75–89 | DOI | MR | Zbl