Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1997_31_4_a12, author = {Yu. A. Farkov}, title = {Orthogonal {Wavelets} on {Locally} {Compact} {Abelian} {Groups}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {86--88}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1997_31_4_a12/} }
Yu. A. Farkov. Orthogonal Wavelets on Locally Compact Abelian Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 4, pp. 86-88. http://geodesic.mathdoc.fr/item/FAA_1997_31_4_a12/
[1] Meyer Y., Ondelettes et Operateurs. I: Ondelettes, Hermann, Paris, 1990 | MR
[2] Jia R.-Q., Shen Z., Proc. Edinburgh Math. Society, 37 (1994), 271–300 | DOI | MR | Zbl
[3] Dahlke S., “Multiresolution analysis and wavelets on locally compact Abelian groups”, Wavelets, Images and Surface Fitting, eds. P. J. Laurent, A. Le Mehaute, and L. L. Schumaker, A. K. Peters, Wellesley, 1994, 141–156 | MR | Zbl
[4] Grochenig K. H., Madych W. R., IEEE Trans. Inform. Theory, 38 (1992), 556–568 | DOI | MR
[5] de Boor C., De Vore R., Ron A., Constr. Approx., 9 (1993), 123–166 | DOI | MR | Zbl
[6] Tikhomirov V. M., “Garmoniki i splainy kak optimalnye sredstva priblizheniya i vosstanovleniya”, UMN, 50:2 (1995), 125–174 | MR | Zbl
[7] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, T. 1, Nauka, M., 1975 | MR
[8] Holschneider M., “Wavelet analysis over Abelian groups”, Appl. Comput. Harm. Analysis, 2 (1995), 52–60 | DOI | MR | Zbl