Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1997_31_3_a2, author = {I. V. Mel'nikova}, title = {Properties of {Lions's} {d-Semigroups} and {Generalized} {Well-Posedness} of the {Cauchy} {Problem}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {23--34}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1997_31_3_a2/} }
TY - JOUR AU - I. V. Mel'nikova TI - Properties of Lions's d-Semigroups and Generalized Well-Posedness of the Cauchy Problem JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1997 SP - 23 EP - 34 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1997_31_3_a2/ LA - ru ID - FAA_1997_31_3_a2 ER -
I. V. Mel'nikova. Properties of Lions's d-Semigroups and Generalized Well-Posedness of the Cauchy Problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 3, pp. 23-34. http://geodesic.mathdoc.fr/item/FAA_1997_31_3_a2/
[1] Melnikova I. V., Alshanskii M. A., “Obobschennaya korrektnost zadachi Koshi i integrirovannye polugruppy”, Dokl. RAN, 343:4 (1995), 448–451 | MR
[2] Melnikova I. V., Alshanskii M. A., “Korrektnost zadachi Koshi v banakhovom prostranstve: regulyarnyi i vyrozhdennyi sluchai”, Itogi nauki i tekhniki. Sovrem. matem. i ee pril. Analiz-9, 27, VINITI, 1995, 5–64
[3] Melnikova I. V., Filinkov A. I., “Integrirovannye i $C$-polugruppy. Korrektnost i regulyarizatsiya differentsialno-operatornykh zadach”, UMN, 49:6 (1994), 111–150 | MR
[4] Arendt W., “Vector valued Laplace transforms and Cauchy problems”, Israel J. Math., 59 (1987), 327–352 | DOI | MR | Zbl
[5] Arendt W., Sobolev Imbeddings and Integrated Semigroups, Lect. Notes Pure Appl. Math., 135, Marsel Dekker, New York, 1991 | MR
[6] Chazarain J., “Problemes de Cauchy abstraits et applications a quelques problems mixtes”, J. Funct. Anal., 7 (1971), 386–446 | DOI | MR | Zbl
[7] Cioranescu I., Lumer G., “Regularizations of evolution equations via kernels $K(t)$, $K$-evolution operators and convoluted semigroups, generation theorems”, LSU Seminar Notes in Funct. Anal. and PDES 1993–1994, Louisiana State Univ., Baton Rouge, 1994, 45–52 | MR
[8] Davies E. B., Pang M. M., “The Cauchy problem and a generalization of the Hille–Yosida theorem”, Proc. London Math. Soc., 55 (1987), 181–208 | DOI | MR | Zbl
[9] Fattorini H. O., The Cauchy Problem. Reading, Addison-Wesley, Mass., 1983 | MR
[10] Kellerman H., Hieber M., “Integrated semigroups”, J. Funct. Anal., 84 (1989), 160–180 | DOI | MR | Zbl
[11] Komura T., “Semigroups of operators in locally convex spaces”, J. Funct. Anal., 2 (1968), 258–296 | DOI | MR | Zbl
[12] de Laubenfels R., “$C$-semigroups and the Cauchy problem”, J. Funct. Anal., 111 (1993), 44–61 | DOI | MR
[13] Lions J.-L., “Les semi-groupes distributions”, Portug. Math., 19:3–4 (1960), 141–161 | MR
[14] Melnikova I. V., “General theory of ill-posed Cauchy problem”, J. Inverse Ill-Posed Probl., 3:2 (1995), 149–171 | DOI | MR | Zbl
[15] Miyadera I., “$C$-semigroups and semigroups of linear operators”, Semigroup forum, 1990, 133–143 | MR
[16] Neubrander F., “Integrated semigroups and their application to the abstract Cauchy problem”, Pacif. J. Math., 135 (1988), 111–157 | DOI | MR
[17] Oharu S., “Semigroups of linear operators in a Banach space”, Publ. Res. Inst. Math. Sci., 27 (1971), 205–260 | DOI | MR
[18] Sova M., “Concerning the characterization of generators of distribution semigroups”, Cas. Pestov. Mat., 105:4 (1980), 329–340 | MR | Zbl
[19] Tanaka N., Okazawa N., “Local $C$-semigroups and local integrated semigroups”, Proc. London Math. Soc., 61:3 (1990), 63–90 | DOI | MR | Zbl
[20] Ushijima T., “Some properties of regular distribution semigroups”, Proc. Jpn. Acad., 45 (1969), 224–227 | DOI | MR | Zbl