Normal Forms of the Whitney Umbrella with Respect to the Contact Group Preserving a Cone
Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 2, pp. 91-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1997_31_2_a14,
     author = {B. Z. Shapiro},
     title = {Normal {Forms} of the {Whitney} {Umbrella} with {Respect} to the {Contact} {Group} {Preserving} a {Cone}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {91--94},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1997_31_2_a14/}
}
TY  - JOUR
AU  - B. Z. Shapiro
TI  - Normal Forms of the Whitney Umbrella with Respect to the Contact Group Preserving a Cone
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1997
SP  - 91
EP  - 94
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1997_31_2_a14/
LA  - ru
ID  - FAA_1997_31_2_a14
ER  - 
%0 Journal Article
%A B. Z. Shapiro
%T Normal Forms of the Whitney Umbrella with Respect to the Contact Group Preserving a Cone
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1997
%P 91-94
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1997_31_2_a14/
%G ru
%F FAA_1997_31_2_a14
B. Z. Shapiro. Normal Forms of the Whitney Umbrella with Respect to the Contact Group Preserving a Cone. Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 2, pp. 91-94. http://geodesic.mathdoc.fr/item/FAA_1997_31_2_a14/

[1] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, t. 1, Nauka, M., 1982 | MR

[2] Arnold V. I., Vasilev V. A., Goryunov V. V., Lyashko O. V., Osobennosti I. Lokalnaya i globalnaya teoriya, Itogi nauki i tekhniki. Sovrem. problemy matematiki. Fundamentalnye napravleniya, 6, VINITI, M., 1988

[3] Danon J., “$A$-equivalence and the equivalence of sections of images and discriminants”, Lecture Notes in Math., 1462, 1989, 93–121 | DOI | MR

[4] Mond D., “On the classification of germs of maps from $R^2$ to $R^3$”, Proc. London Math. Soc., 50 (1985), 333–369 | DOI | MR | Zbl

[5] Shapiro B. Z., Math. Scand., 77:1 (1995), 19–44 | DOI | MR | Zbl