Normal Forms of the Whitney Umbrella with Respect to the Contact Group Preserving a Cone
Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 2, pp. 91-94
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1997_31_2_a14,
author = {B. Z. Shapiro},
title = {Normal {Forms} of the {Whitney} {Umbrella} with {Respect} to the {Contact} {Group} {Preserving} a {Cone}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {91--94},
year = {1997},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1997_31_2_a14/}
}
B. Z. Shapiro. Normal Forms of the Whitney Umbrella with Respect to the Contact Group Preserving a Cone. Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 2, pp. 91-94. http://geodesic.mathdoc.fr/item/FAA_1997_31_2_a14/
[1] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, t. 1, Nauka, M., 1982 | MR
[2] Arnold V. I., Vasilev V. A., Goryunov V. V., Lyashko O. V., Osobennosti I. Lokalnaya i globalnaya teoriya, Itogi nauki i tekhniki. Sovrem. problemy matematiki. Fundamentalnye napravleniya, 6, VINITI, M., 1988
[3] Danon J., “$A$-equivalence and the equivalence of sections of images and discriminants”, Lecture Notes in Math., 1462, 1989, 93–121 | DOI | MR
[4] Mond D., “On the classification of germs of maps from $R^2$ to $R^3$”, Proc. London Math. Soc., 50 (1985), 333–369 | DOI | MR | Zbl
[5] Shapiro B. Z., Math. Scand., 77:1 (1995), 19–44 | DOI | MR | Zbl