Boundary Conditions for Integrable Lattices
Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 2, pp. 1-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1997_31_2_a0,
     author = {V. E. Adler and I. T. Habibullin},
     title = {Boundary {Conditions} for {Integrable} {Lattices}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1997_31_2_a0/}
}
TY  - JOUR
AU  - V. E. Adler
AU  - I. T. Habibullin
TI  - Boundary Conditions for Integrable Lattices
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1997
SP  - 1
EP  - 14
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1997_31_2_a0/
LA  - ru
ID  - FAA_1997_31_2_a0
ER  - 
%0 Journal Article
%A V. E. Adler
%A I. T. Habibullin
%T Boundary Conditions for Integrable Lattices
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1997
%P 1-14
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1997_31_2_a0/
%G ru
%F FAA_1997_31_2_a0
V. E. Adler; I. T. Habibullin. Boundary Conditions for Integrable Lattices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 2, pp. 1-14. http://geodesic.mathdoc.fr/item/FAA_1997_31_2_a0/

[1] Sklyanin E. K., “Granichnye usloviya dlya integriruemykh sistem”, Funkts. analiz i ego pril., 21:2 (1987), 86–87 | MR | Zbl

[2] Veselov A. P., Shabat A. B., “Odevayuschaya tsepochka i spektralnaya teoriya operatora Shredingera”, Funkts. analiz i ego pril., 27:2 (1993), 1–21 | MR | Zbl

[3] Adler V. E., “Nonlinear chains and Painlevé equations”, Phys. D, 73 (1994), 335–351 | DOI | MR | Zbl

[4] Habibullin I. T., “Symmetries of boundary problems”, Phys. Lett. A, 178 (1993), 369–375 | DOI | MR

[5] Gürel B., Gürses M., Habibullin I. T., “Boundary conditions, compatible with the symmetry algebra”, J. Math. Phys., 36:12 (1995), 6809–6821 | DOI | MR | Zbl

[6] Habibullin I. T., Svinolupov S. I., “Integrable boundary value problems for the multicomponent Scrödinger equation”, Phys. D, 87 (1995), 101–106 | DOI | MR

[7] Adler V. E., Habibullin I. T., “Integrable boundary conditions for the Toda lattice”, J. Phys. A, 28 (1995), 6717–6729 | DOI | MR | Zbl

[8] Bogoyavlenskii O. I., Oprokidyvayuschiesya solitony. Nelineinye integriruemye uravneniya, Nauka, M., 1991

[9] Shabat A. B., Yamilov R. I., “Simmetrii nelineinykh tsepochek”, Algebra i analiz, 2:2 (1990), 183 | MR

[10] Levi D., “Nonlinear differential difference equations as Bäcklund transformations”, J. Phys. A, 14:5 (1981), 1083–1098 | DOI | MR | Zbl

[11] Nijhoff F., Satsuma J., Kajiwara K., Grammaticos B., Ramani A., “A study of the alternate discrete Painlevé II equation”, Inverse Problems, 12 (1996), 697–716 | DOI | MR | Zbl

[12] Ruijsenaars S. N. M., Relativistic Toda system, Preprint Stichting Centre for Mathematics and computer Sciences, Amsterdam, 1986 | MR | Zbl

[13] Bruschi M., Ragnisco O., “The periodic relativistic Toda lattice: direct and inverse problem”, Inverse Problems, 5 (1989), 389–405 | DOI | MR | Zbl

[14] Gromak V. I., Lukashevich N. A., Analiticheskie svoistva reshenii uravnenii Penleve, Universitetskoe, Minsk, 1992 | MR

[15] Its A. R., Kitaev A. V., Fokas A. S., “Izomonodromnyi podkhod v teorii dvumernoi kvantovoi gravitatsii”, UMN, 45:6 (1987), 135–136 | MR