Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1997_31_1_a5, author = {V. A. Geiler and M. M. Senatorov}, title = {Periodic {Potentials} for {Which} {All} {Gaps} {Are} {Nontrivial}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {67--70}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1997_31_1_a5/} }
V. A. Geiler; M. M. Senatorov. Periodic Potentials for Which All Gaps Are Nontrivial. Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 1, pp. 67-70. http://geodesic.mathdoc.fr/item/FAA_1997_31_1_a5/
[1] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 4, Mir, M., 1982 | MR
[2] Stankevich I. V., DAN SSSR, 192:1 (1970), 34–37 | MR | Zbl
[3] Marchenko V. A., Ostrovskii I. V., “Kharakteristika spektra operatora Khilla”, Matem. sb., 97:4 (1975), 540–606 | MR | Zbl
[4] Garnett J., Trubowitz E., “Gaps and bands of one-dimensional periodic Schrodinger operators”, Comment. Math. Helv., 59 (1984), 258–312 | DOI | MR | Zbl
[5] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR | Zbl
[6] A. Ya. Shik, Yu. V. Shmartsev (red.), Kvantovyi effekt Kholla, Mir, M., 1986