Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1997_31_1_a11, author = {A. S. Osipov}, title = {Integration of {Non-Abelian} {Langmuir} {Type} {Lattices} by the {Inverse} {Spectral} {Problem} {Method}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {86--89}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1997_31_1_a11/} }
TY - JOUR AU - A. S. Osipov TI - Integration of Non-Abelian Langmuir Type Lattices by the Inverse Spectral Problem Method JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1997 SP - 86 EP - 89 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1997_31_1_a11/ LA - ru ID - FAA_1997_31_1_a11 ER -
A. S. Osipov. Integration of Non-Abelian Langmuir Type Lattices by the Inverse Spectral Problem Method. Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 1, pp. 86-89. http://geodesic.mathdoc.fr/item/FAA_1997_31_1_a11/
[1] Kac M., van Moerbeke P., “On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices”, Adv. Math., 16 (1975), 160–169 | DOI | MR | Zbl
[2] Berezansky Yu. M., Rep. Math. Phys., 24:1 (1986), 21–47 | DOI | MR
[3] Bogoyavlenskii O. I., “Integriruemye dinamicheskie sistemy, svyazannye s uravneniem KdV”, Izv. AN SSSR, ser. matem., 51:6 (1987), 1123–1142
[4] Itoh I., “Integrals of a Lotka-Volterra system of odd number of variables”, Progr. Theoret. Phys., 78:3 (1987), 507–510 | DOI | MR
[5] Gekhtman M. I., “Integrirovanie neabelevykh tsepochek tipa Tody”, Funkts. analiz i ego pril., 24:3 (1990), 72–73 | MR | Zbl
[6] Gekhtman M. I., “Resheniya beskonechnoi tsepochki Tody”, Funkts. analiz i ego pril., 25:3 (1991), 82–84 | MR | Zbl