@article{FAA_1996_30_4_a8,
author = {I. Z. Golubchik and V. V. Sokolov},
title = {Integrable {Systems} {Generated} by a {Constant} {Solution} of the {Yang{\textendash}Baxter} {Equation}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {68--71},
year = {1996},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a8/}
}
TY - JOUR AU - I. Z. Golubchik AU - V. V. Sokolov TI - Integrable Systems Generated by a Constant Solution of the Yang–Baxter Equation JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1996 SP - 68 EP - 71 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a8/ LA - ru ID - FAA_1996_30_4_a8 ER -
I. Z. Golubchik; V. V. Sokolov. Integrable Systems Generated by a Constant Solution of the Yang–Baxter Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 4, pp. 68-71. http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a8/
[1] Drinfeld V. G., Sokolov V. V., “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 24, VINITI, M., 1984, 81–180 | MR | Zbl
[2] Drinfeld V. G., DAN SSSR, 273:3 (1983), 531–535 | MR
[3] Semenov-Tyan-Shanskii M. A., “Chto takoe klassicheskaya $r$-matritsa”, Funkts. analiz i ego pril., 17:4 (1983), 17–33 | MR
[4] Medina A., “Sur quelques algebres symetriques a gauche dont l'algebre de Lie sous- jacente est resoluble”, C. R. Acad. Sci. Paris, Ser. A, 286 (1978), 173–176 | MR | Zbl
[5] Svinolupov S. I., Phys. Lett. A., 135 (1987), 32–36 | DOI | MR
[6] Golubchik I. Z., Sokolov V. V., Svinolupov S. I., A New Class of Nonassociative Algebras and a Generalized Factorization Method, Preprint ESI, No 53, Wien, Austria, 1993 | MR
[7] Reiman A. G., Semenov-Tyan-Shanskii M. A., “Semeistvo gamiltonovykh struktur, ierarkhiya gamiltonianov i reduktsiya dlya matrichnykh differentsialnykh operatorov pervogo poryadka”, Funkts. analiz i ego pril., 14:2 (1980), 77–78 | MR | Zbl