Integrable Systems Generated by a Constant Solution of the Yang--Baxter Equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 4, pp. 68-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1996_30_4_a8,
     author = {I. Z. Golubchik and V. V. Sokolov},
     title = {Integrable {Systems} {Generated} by a {Constant} {Solution} of the {Yang--Baxter} {Equation}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {68--71},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a8/}
}
TY  - JOUR
AU  - I. Z. Golubchik
AU  - V. V. Sokolov
TI  - Integrable Systems Generated by a Constant Solution of the Yang--Baxter Equation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1996
SP  - 68
EP  - 71
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a8/
LA  - ru
ID  - FAA_1996_30_4_a8
ER  - 
%0 Journal Article
%A I. Z. Golubchik
%A V. V. Sokolov
%T Integrable Systems Generated by a Constant Solution of the Yang--Baxter Equation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1996
%P 68-71
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a8/
%G ru
%F FAA_1996_30_4_a8
I. Z. Golubchik; V. V. Sokolov. Integrable Systems Generated by a Constant Solution of the Yang--Baxter Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 4, pp. 68-71. http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a8/

[1] Drinfeld V. G., Sokolov V. V., “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 24, VINITI, M., 1984, 81–180 | MR | Zbl

[2] Drinfeld V. G., DAN SSSR, 273:3 (1983), 531–535 | MR

[3] Semenov-Tyan-Shanskii M. A., “Chto takoe klassicheskaya $r$-matritsa”, Funkts. analiz i ego pril., 17:4 (1983), 17–33 | MR

[4] Medina A., “Sur quelques algebres symetriques a gauche dont l'algebre de Lie sous- jacente est resoluble”, C. R. Acad. Sci. Paris, Ser. A, 286 (1978), 173–176 | MR | Zbl

[5] Svinolupov S. I., Phys. Lett. A., 135 (1987), 32–36 | DOI | MR

[6] Golubchik I. Z., Sokolov V. V., Svinolupov S. I., A New Class of Nonassociative Algebras and a Generalized Factorization Method, Preprint ESI, No 53, Wien, Austria, 1993 | MR

[7] Reiman A. G., Semenov-Tyan-Shanskii M. A., “Semeistvo gamiltonovykh struktur, ierarkhiya gamiltonianov i reduktsiya dlya matrichnykh differentsialnykh operatorov pervogo poryadka”, Funkts. analiz i ego pril., 14:2 (1980), 77–78 | MR | Zbl