Lefschetz Numbers and Geometry of Operators in $W^*$-Modules
Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 4, pp. 45-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1996_30_4_a4,
     author = {E. V. Troitskii and M. Frank},
     title = {Lefschetz {Numbers} and {Geometry} of {Operators} in $W^*${-Modules}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a4/}
}
TY  - JOUR
AU  - E. V. Troitskii
AU  - M. Frank
TI  - Lefschetz Numbers and Geometry of Operators in $W^*$-Modules
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1996
SP  - 45
EP  - 57
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a4/
LA  - ru
ID  - FAA_1996_30_4_a4
ER  - 
%0 Journal Article
%A E. V. Troitskii
%A M. Frank
%T Lefschetz Numbers and Geometry of Operators in $W^*$-Modules
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1996
%P 45-57
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a4/
%G ru
%F FAA_1996_30_4_a4
E. V. Troitskii; M. Frank. Lefschetz Numbers and Geometry of Operators in $W^*$-Modules. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 4, pp. 45-57. http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a4/

[1] Connes A., “Non-commutative differential geometry”, Publ. Math. IHES, 62, 1985, 41–144 | DOI | MR | Zbl

[2] Dupré M. J., Fillmore P. A., “Triviality theorems for Hilbert modules”, Topics in modern operator theory, 5th International conference on operator theory (Timisoara and Herculane, Romania, June 2–12, 1980), Birkhäuser, Basel-Boston-Stuttgart, 1981, 71–79 | DOI | MR

[3] Frank M., “Self-duality and C*-reflexivity of Hilbert C*-modules”, Z. Anal. Anwendungen, 9 (1990), 165–176 | DOI | MR

[4] Frank M., “Hilbert C*-modules over monotone complete C*-algebras”, Math. Nachr., 175 (1995), 61–83 | DOI | MR | Zbl

[5] Havet J.-F., Calcul fonctionnel continu dans les modules hilbertiens autoduaux, Preprint, Université d'Orléans, Orléans, France, 1988 | Zbl

[6] Karoubi M., “Homologie cyclique des groupes et des algébres”, C. R. Acad. Sci. Paris Sér. 1, 297 (1983), 381–384 | MR | Zbl

[7] Karoubi M., “Homologie cyclique et $K$-théorie algébrique, I”, C. R. Acad. Sci. Paris Sér. 1, 297:8 (1983), 447–450 | MR | Zbl

[8] Lance E. C., Hilbert C*-Modules—a Toolkit for Operator Algebraists, London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[9] Lin H., “Bounded module maps and pure completely positive maps”, J. Operator Theory, 26 (1991), 121–138 | MR | Zbl

[10] Lin H., “Injective Hilbert C*-modules”, Pacif. J. Math., 154 (1992), 131–164 | DOI | MR | Zbl

[11] Manuilov V. M., Representability of Functionals and Adjointability of Operators on C*-Hilbert Modules, Preprint 1/94, Moscow State University, Dept. Mech. and Math., Seminar “Toplology and Analysis” Moscow, Russia, Sept. 1994 | MR

[12] Mischenko A. S., “Predstavleniya kompaktnykh grupp v gilbertovykh modulyakh nad C*-algebrami”, Trudy Matem. in-ta im. V. A. Steklova, 166, 1984, 161–176 | Zbl

[13] Mischenko A. S., Fomenko A. T., “Indeks ellipticheskikh operatorov nad C*-algebrami”, Izv. AN SSSR, ser. matem., 43:4 (1979), 831–859 | MR | Zbl

[14] Paschke W. L., “Inner product modules over B*-algebras”, Trans. Am. Math. Soc., 182 (1973), 443–468 | DOI | MR | Zbl

[15] Paschke W. L., “The double $B$-dual of an inner product module over a C*-algebra $B$”, Can. J. Math., 26 (1974), 1272–1280 | DOI | MR | Zbl

[16] Pedersen G. K., C*-Algebras and their Automorphism Groups, Academic Press, London–New York–San Francisco, 1979 | MR | Zbl

[17] Troitsky E. V., “The index of equivariant elliptic operators over C*-algebras”, Ann. Global Anal. Geom., 5:1 (1987), 3–22 | DOI | MR | Zbl

[18] Troitsky E. V., “Lefschetz numbers of C*-complexes”, Lect. Notes in Math., 1474, Springer, 1991, 193–206 | DOI | MR

[19] Troitsky E. V., “Orthogonal complements and endomorphisms of Hilbert modules and C*-elliptic complexes”, Novikov Conjectures, Index Theorems and Ridgidity, v. 2, London Math. Soc. Lect. Notes Series, 227, 1995, 309–331 | MR | Zbl