Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1996_30_4_a13, author = {V. M. Manuilov}, title = {Representability of {Functionals} on {Hilbert} $C^*${-Modules}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {83--86}, publisher = {mathdoc}, volume = {30}, number = {4}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a13/} }
V. M. Manuilov. Representability of Functionals on Hilbert $C^*$-Modules. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 4, pp. 83-86. http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a13/
[1] Paschke W. L., “The double B-dual of an inner product module over a C$^*$-algebra B”, Can. J. Math., 26 (1974), 1272–1280 | DOI | MR | Zbl
[2] Mischenko A. S., Fomenko A. T., “Indeks ellipticheskikh operatorov nad $C^*$-algebrami”, Izv. AN SSSR. Ser. matem., 43 (1979), 831–859 | MR | Zbl
[3] Kasparov G. G., “Hilbert C*-modules: Theorems of Stinespring and Voiculescu”, J. Operator Theory, 4 (1980), 133–150 | MR | Zbl
[4] Frank M., Geometrical Aspects of Hilbert $C^*$-Modules, Preprint No 22, Københavns Universitet, 1993 | MR
[5] Troitsky E. V., Some aspects of geometry of operators in Hilbert modules, Preprint No 173, Ruhr-Universität Bochum, 1994 | MR