@article{FAA_1996_30_4_a11,
author = {S. Z. Levendorskii},
title = {Magnetic {Floquet} {Theory} and {Spectral} {Asymptotics} for {Schr\"odinger} {Operators}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {77--80},
year = {1996},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a11/}
}
S. Z. Levendorskii. Magnetic Floquet Theory and Spectral Asymptotics for Schrödinger Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 4, pp. 77-80. http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a11/
[1] Birman M. Š, “Discrete spectrum in the gaps of a continuous one for perturbations with large coupling constant”, Advances in Soviet Mathematics, 7, Am. Math. Soc., Providence, 1991, 57–73 | MR | Zbl
[2] Hörmander L., The Analysis of Linear Partial Differential Operators, 3, Springer-Verlag, Berlin–New York–Heidelberg, 1985 | MR
[3] Ivrii V., Precise Spectral Asymptotics for Elliptic Operators, Lect. Notes in Math., 1100, Springer-Verlag, Berlin, 1984 | DOI | MR | Zbl
[4] Levendorskii S. Z., “Lower bounds for the number of eigenvalue branches for the Schrodinger operator $H-\lambda W$ in a gap of $H$: the case of indefinite $W$”, Commun. Partial Diff. Equat., 20:5–6 (1995), 827–854 | DOI | MR
[5] Levendorskii S. Z., Math. Z. (to appear)
[6] Levendorskii S. Z., Trans. Am. Math. Soc. (to appear)
[7] Mohamed A., Raikov G. D., “On the spectral theory of the Schrödinger operator with electromagnetic potential”, Pseudo-differential calculus and mathematical physics, Math. Top., 5, Academie Verlag, Berlin, 1994, 298–390 | MR
[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR
[9] Rozenblyum G. V., Solomyak M. Z., Shubin M. A., Spektralnaya teoriya differentsialnykh operatorov, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 64, VINITI, M., 1989 | MR