Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1996_30_4_a11, author = {S. Z. Levendorskii}, title = {Magnetic {Floquet} {Theory} and {Spectral} {Asymptotics} for {Schr\"odinger} {Operators}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {77--80}, publisher = {mathdoc}, volume = {30}, number = {4}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a11/} }
TY - JOUR AU - S. Z. Levendorskii TI - Magnetic Floquet Theory and Spectral Asymptotics for Schr\"odinger Operators JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1996 SP - 77 EP - 80 VL - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a11/ LA - ru ID - FAA_1996_30_4_a11 ER -
S. Z. Levendorskii. Magnetic Floquet Theory and Spectral Asymptotics for Schr\"odinger Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 4, pp. 77-80. http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a11/
[1] Birman M. Š, “Discrete spectrum in the gaps of a continuous one for perturbations with large coupling constant”, Advances in Soviet Mathematics, 7, Am. Math. Soc., Providence, 1991, 57–73 | MR | Zbl
[2] Hörmander L., The Analysis of Linear Partial Differential Operators, 3, Springer-Verlag, Berlin–New York–Heidelberg, 1985 | MR
[3] Ivrii V., Precise Spectral Asymptotics for Elliptic Operators, Lect. Notes in Math., 1100, Springer-Verlag, Berlin, 1984 | DOI | MR | Zbl
[4] Levendorskii S. Z., “Lower bounds for the number of eigenvalue branches for the Schrodinger operator $H-\lambda W$ in a gap of $H$: the case of indefinite $W$”, Commun. Partial Diff. Equat., 20:5–6 (1995), 827–854 | DOI | MR
[5] Levendorskii S. Z., Math. Z. (to appear)
[6] Levendorskii S. Z., Trans. Am. Math. Soc. (to appear)
[7] Mohamed A., Raikov G. D., “On the spectral theory of the Schrödinger operator with electromagnetic potential”, Pseudo-differential calculus and mathematical physics, Math. Top., 5, Academie Verlag, Berlin, 1994, 298–390 | MR
[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR
[9] Rozenblyum G. V., Solomyak M. Z., Shubin M. A., Spektralnaya teoriya differentsialnykh operatorov, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 64, VINITI, M., 1989 | MR