Zygmund's Theorem and the Boundary Behavior of Operator $R$-functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 3, pp. 82-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1996_30_3_a9,
     author = {S. N. Naboko},
     title = {Zygmund's {Theorem} and the {Boundary} {Behavior} of {Operator} $R$-functions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {82--84},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_3_a9/}
}
TY  - JOUR
AU  - S. N. Naboko
TI  - Zygmund's Theorem and the Boundary Behavior of Operator $R$-functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1996
SP  - 82
EP  - 84
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1996_30_3_a9/
LA  - ru
ID  - FAA_1996_30_3_a9
ER  - 
%0 Journal Article
%A S. N. Naboko
%T Zygmund's Theorem and the Boundary Behavior of Operator $R$-functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1996
%P 82-84
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1996_30_3_a9/
%G ru
%F FAA_1996_30_3_a9
S. N. Naboko. Zygmund's Theorem and the Boundary Behavior of Operator $R$-functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 3, pp. 82-84. http://geodesic.mathdoc.fr/item/FAA_1996_30_3_a9/

[1] Faddeev L. D., Pavlov B. S., Lecture Notes in Math., 1043, Springer-Verlag, 1984, 124–128 | MR

[2] Naboko S. N., “Uniqueness theorems for operator-valued functions with positive imaginary part, and the singular spectrum in the selfadjoint Friedrichs model”, Arkiv Mat., 25 (1987), 115–140 | DOI | MR | Zbl

[3] Naboko S. N., Problemy matem. fiz., 12, LGU, 1987, 132–155 | MR

[4] Veselov V. F., Naboko S. N., “Opredelitel kharakteristicheskoi funktsii i singulyarnyi spektr nesamosopryazhennogo operatora”, Matem. sb., 129(171):1 (1986), 20–39 | MR | Zbl

[5] Birman M. S., Yafaev D. R., “Funktsiya spektralnogo sdviga. Raboty M. G. Kreina i ikh dalneishee razvitie”, Algebra i analiz, 4:5 (1992), 1–44 | MR | Zbl

[6] Sëkefalvi-Nad B., Foiash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[7] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve, Nauka, M., 1967

[8] Bourgain J., “Vector valued singular integrals and the $H^1$-${\rm BMO}$ duality”, Israel seminar on geometrical aspects of functional analysis (1983/84), Tel Aviv Univ., Tel Aviv, 1984, XVI, 23 | MR

[9] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[10] Naboko S. N., “Netangentsialnye granichnye znacheniya operatornykh R-funktsii v poluploskosti”, Algebra i analiz, 1:5 (1989), 197–222 | MR

[11] Naboko S. N., Func. Anal. and Oper. Theory (Warsaw, 1992), Banach Center Publ., 30, Polish Acad. Sci., Warsaw, 1994, 277–285 | DOI | MR | Zbl

[12] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR