Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1996_30_3_a6, author = {A. V. Babin}, title = {Homotopy {Conservation} and {Spatially} {Complex} {Solutions} of {Parabolic} {Equations} in {Several} {Variables}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {73--76}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_3_a6/} }
TY - JOUR AU - A. V. Babin TI - Homotopy Conservation and Spatially Complex Solutions of Parabolic Equations in Several Variables JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1996 SP - 73 EP - 76 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1996_30_3_a6/ LA - ru ID - FAA_1996_30_3_a6 ER -
A. V. Babin. Homotopy Conservation and Spatially Complex Solutions of Parabolic Equations in Several Variables. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 3, pp. 73-76. http://geodesic.mathdoc.fr/item/FAA_1996_30_3_a6/
[1] Babin A. V., Vishik M. V., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl
[2] Fuks D. B., Fomenko A. T., Gutenmakher V. L., Gomotopicheskaya topologiya, Izd-vo Mosk. univ., M., 1969
[3] Afraimovich V., Babin A., Chow S.-N., Spatial Chaotic Structure of Attractors of Reaction–Diffusion Systems, Preprint CDSNS 94-185, 1994 | MR
[4] Babin A. V., “Homotopy stable spatially chaotic waves on an infinite interval”, Proc. of Symposium on Structure and Dynamics of Nonlinear Waves in Fluids, Hannover, 1994, to be published | MR
[5] Babin A., Bunimovich L., “Dynamics of stable chaotic waves generated by hyperbolic PDE” (to appear)
[6] Bethuel F., Brezis H., Helen F., Ginzburg–Landau Vortices, Birkhauser, 1994 | MR | Zbl
[7] Brezis H., “$S^k$-valued maps with singularities”, Lect. Notes in Math., 1365, Springer-Verlag, 1989, 1–30 | DOI | MR
[8] Hamilton R., Harmonic maps of manifolds with boundary, Lect. Notes in Math., 471, Springer-Verlag, 1975 | DOI | MR | Zbl