Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1996_30_2_a7, author = {S. L. Ziglin}, title = {The $ABC$-flow is not integrable for $A=B$}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {80--81}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_2_a7/} }
S. L. Ziglin. The $ABC$-flow is not integrable for $A=B$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 2, pp. 80-81. http://geodesic.mathdoc.fr/item/FAA_1996_30_2_a7/
[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR
[2] Henon M., C. R. Acad. Sci. Paris, 262 (1966), 312–314
[3] Zaslavskii G. M., Sagdeev R. Z., Usikov U. A., Chernikov A. A., Slabyi khaos i kvaziregulyarnye struktury, Nauka, M., 1991 | MR | Zbl
[4] Arnold V. I., Nekotorye voprosy sovremennogo analiza, Izd-vo MGU, M., 1984, 8–21
[5] Ziglin S. L., “Rasscheplenie separatris i nesuschestvovanie pervykh integralov v sistemakh differentsialnykh uravnenii tipa gamiltonovykh s dvumya stepenyami svobody”, Izv. AN SSSR, ser. matem., 51:5 (1987), 1088–1103 | MR
[6] Ziglin S. L., “Vetvlenie reshenii i nesuschestvovanie pervykh integralov v gamiltonovoi mekhanike, I”, Funkts. analiz i ego pril., 16:3 (1982), 30–41 | MR | Zbl
[7] Yoshida H., Ramani A., Grammaticos B., Hietarinta J., “On the non-integrability of some generalized Toda lattices”, Phys. A, 144 (1987), 310–321 | DOI | MR | Zbl