@article{FAA_1996_30_2_a3,
author = {Yu. V. Chekanov},
title = {Critical {Points} of {Quasi-Functions} and {Generating} {Families} of {Legendrian} {Manifolds}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {56--69},
year = {1996},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_2_a3/}
}
Yu. V. Chekanov. Critical Points of Quasi-Functions and Generating Families of Legendrian Manifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 2, pp. 56-69. http://geodesic.mathdoc.fr/item/FAA_1996_30_2_a3/
[1] Arnold V. I., “Sur une propriété topologique des applications globalement canonique de la mécanique classique”, C. R. Acad. Sci. Paris Sér. I, 261 (1965), 3719–3722 | MR
[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974, dopolnenie 4 | MR
[3] Arnold V. I., “Pervye shagi simplekticheskoi topologii”, UMN, 41:6 (1986), 3–18 | DOI | MR
[4] Arnold V. I., Givental A. B., “Simplekticheskaya geometriya”, Dinamicheskie sistemy – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 4, VINITI, M., 1986, 5–139 | MR
[5] Conley C., Zehnder E., “The Birkhoff–Lewis fixed point theorem and a conjecture of V. I. Arnold”, Invent. Math., 73 (1983), 33–49 | DOI | MR | Zbl
[6] Chaperon M., “Une idée du type 'geodesiques brisée` pour les systemes hamiltoniens”, C. R. Acad. Sci. Paris Sér. I, 298 (1984), 293–296 | MR | Zbl
[7] Laudenbach F., Sikorav J.-C., “Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent”, Invent. Math., 82 (1985), 349–358 | DOI | MR
[8] Sikorav J.-C., “Sur les immersions lagrangiennes dans un fibré cotangent”, C. R. Acad. Sci. Paris Sér. I, 32 (1986), 119–122 | MR
[9] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | DOI | MR | Zbl
[10] Chekanov Yu. V., “Lezhandrova teoriya Morsa”, UMN, 42:4 (1987), 139