Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1996_30_2_a2, author = {V. A. Zorich and V. M. Kesel'man}, title = {On the {Conformal} {Type} of a {Riemannian} {Manifold}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {40--55}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_2_a2/} }
V. A. Zorich; V. M. Kesel'man. On the Conformal Type of a Riemannian Manifold. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 2, pp. 40-55. http://geodesic.mathdoc.fr/item/FAA_1996_30_2_a2/
[1] Ahlfors L., “Sur le type d'une surface de Riemann”, C. R. Acad. Sci. Paris Ser. A, 201 (1935), 30–32 | MR
[2] Ahlfors L., “Zur Theorie des Überlagerungsflächen”, Acta Math., 65 (1935), 157–194 | DOI | MR
[3] Ahlfors L., Conformal invariants (Topics in Geometric Function Theory), McGrow-Hill, New York, 1973 | MR | Zbl
[4] Ahlfors L., Beurling A., “Conformal invariants and function-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl
[5] Ahlfors L., Sario L., Riemann surfaces, Princ. Univ. Press, Princeton, 1960 | MR
[6] Anderson G. D., Vamanamurthy M. K., Vuorinen M., “Conformal invariants, quasiconformal maps and special functions”, Lecture Notes in Math., 1508, 1992, 1–19 | DOI | MR | Zbl
[7] Caraman P., $n$-Dimensional Quasiconformal Mappings, Editura Academiei Romane, Abacus Press, Tunbridge Wells Haessner Publishing, Inc., Bucharest, Newfoundland, NJ, 1974 | MR | Zbl
[8] Cheng S. V., Yau S. T., “Differential equations on Riemannian manifolds and their geometric applications”, Comm. Pure Appl. Math., 28 (1975), 333–354 | DOI | MR | Zbl
[9] Freedman M. H., He Z. H., “Divergence free fields: Energy and asymptotic crossing number”, Ann. Math., 134 (1991), 189–229 | DOI | MR | Zbl
[10] Freedman M. H., He Z. H., “Links of tori and the energy of incompressible flows”, Topology, 30:2 (1991), 283–287 | DOI | MR | Zbl
[11] Lelong-Ferrand J., “Invariant conform globaux sur les variétés Riemanniennes”, J. Diff. Geom., 8 (1973), 487–510 | MR | Zbl
[12] Ferrand J., “Conformal capacity and conformally invariant metrics .” (to appear)
[13] Ferrand J., “Conformal capacity and conformally invariant functions on manifolds”, C. R. Acad. Sci. Paris Sér. I, 218 (1994), 213–216 | MR
[14] Fuglede B., “Extremal lenght and functional completion”, Acta Math., 83 (1957), 101–129 | MR
[15] Gehring F. V., “Symmetrization of rings in space”, Trans. Am. Math. Soc., 101 (1961), 499–519 | DOI | MR | Zbl
[16] Gehring F. V., “Extremal lenght definitions for the conformal capacity of rings in space”, Mich. Math. J., 9(162), 137–150 | MR | Zbl
[17] Gehring F. V., “Topics in quasiconformal mappings”, Lecture Notes in Math., 1508, 1992, 20–38 ; Reprinted from Proc. Internat. Congr. Math., V. 1 (Berkeley, California 1986), Am. Math. Soc., 1987, 62–80 | DOI | MR | Zbl | MR | Zbl
[18] Grigoryan A. A., “O suschestvovanii polozhitelnykh fundamentalnykh reshenii uravneniya Laplasa na rimanovykh mnogoobraziyakh”, Matem. sb., 128(170):3(11) (1985), 354–363 | MR
[19] Gromov M., “Hyperbolic manifolds, groups and actions”, Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Studies, 97, Princeton Univ. Press, Princeton, NJ, 1981, 183–213 | MR
[20] Gromov M., Structures métriques pour les variétés riemanniennes, Textes Mathématiques, 1, eds. J. Lafontaine et P. Pansu, CEDIC, Paris, 1981 | MR | Zbl
[21] Grimaldi R., Pansu P., “Sur la croissance du volume dans une classe conforme”, J. Math. Pures Appl. (9), 71:1 (1992), 1–19 | MR | Zbl
[22] Goldshtein V. M., Vodopyanov S. K., “Metricheskoe popolnenie oblasti pri pomoschi konformnoi emkosti, invariantnoe pri kvazikonformnykh otobrazheniyakh”, DAN SSSR, 238:5 (1978), 1040–1042 | MR
[23] Hesse J., “A $p$-extremal lenght and $p$-capacity equolity”, Ark. Mat., 13 (1975), 131–144 | DOI | MR | Zbl
[24] Hildebrandt S., “Liouville theorems for harmonic mappings and approach to Bernstein theorems”, Ann. Math. Stud., 102 (1982), 107–131 | MR
[25] Holopainen I., Nonlinear potencial theory and quasiregular mappings on riemannian manifolds, Ann. Acad. Sci. Fenn. Ser. AI, Math. Dissert., 74, Helsinki, 1990 | MR | Zbl
[26] Karp L., “Subharmonic functions on real and complex manifolds”, Math. Z., 178 (1982), 535–554 | DOI | MR
[27] Keselman V. M., “O rimanovykh mnogoobraziyakh $p$-parabolicheskogo tipa”, Izv. vuzov, Matematika, 4 (1985), 81–83 | MR
[28] Kilpelainen T., “Potential Theory for Supersolutions of Degenerate Elliptic Equations”, Indiana Univ. Math. J., 38:2 (1989), 253–275 | DOI | MR
[29] Loewner C., “On the conformal capacity in space”, J. Math. Mech., 8 (1959), 411–414 | MR | Zbl
[30] Milnor J., “A note on curvature and fundamental group”, J. Diff. Geom., 2 (1968), 1–7 | MR | Zbl
[31] Milnor J., “On desiding whether a surface is parabolic or hyperbolic”, Amer. Math. Monthly, 84:1 (1977), 43–46 | DOI | MR | Zbl
[32] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR
[33] Miklyukov V. M., “O konformnom tipe poverkhnostei, teoreme Liuvillya i teoreme Bernshteina”, DAN SSSR, 242:3 (1978), 537–540 | MR | Zbl
[34] Mostov G. D., “Kvazikonformnye otobrazheniya i zhestkost giperbolicheskikh prostranstvennykh form”, Matematika, sb. per., 16:5 (1972), 105–157 | Zbl
[35] Osserman R., “Isoperimetric inequalities”, Bull. Am. Math. Soc., 84 (1978), 1182–1238 | DOI | MR | Zbl
[36] Pansu P., “An isoperimetric inequality on the Heisenberg group”, Proceedings of “Differential Geometry and Homogeneous Spaces”, Torino, 1983, 159–174 | MR | Zbl
[37] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR
[38] Rickman S., Quasiregular mappings, Springer-Verlag, 1993 | MR
[39] Schlesinger E., “Conformal Invariants and Prime Ends”, Am. J. Math., 80 (1958), 83–102 | DOI | MR | Zbl
[40] Sario L., Nakai M., Wang C., Chung L. O., Classification theory of Riemannian manifolds, Lecture Notes in Math., 605, Springer-Verlag, 1977 | DOI | MR | Zbl
[41] Shvarts A. S., “Ob'emnyi invariant nakrytii”, DAN SSSR (NS), 105 (1955), 32–34 | Zbl
[42] Tanaka H., “Harmonic boundaries of Riemannian manifolds”, Nonlinear Analysis, Methods and Applications, 14:1 (1990), 55–67 | DOI | MR | Zbl
[43] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, 1971 | DOI | MR
[44] Vuorinen M., Conformal geometry and quasiregular mappings, Lecture Notes in Math., 1319, Springer-Verlag, 1988 | DOI | MR | Zbl
[45] Ziemer W. P., “Extremal lenght as a capacity”, Mich. Math. J., 17 (1970), 117–128 | DOI | MR | Zbl
[46] Zorich V. A., “On Gromov's geometric version of the global homeomorphism theorem for quasiconformal mappings”, XIV Rolf Nevanlinna Colloquium, Abstracts (Helsinki, June 10–14, 1990), 36 | MR
[47] Zorich V. A., “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Lecture Notes in Math., 1508, 1992, 131–148 | MR