Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1996_30_2_a0, author = {M. S. Agranovich and B. A. Amosov}, title = {Estimates of $s${-Numbers} and {Spectral} {Asymptotics} for {Integral} {Operators} of {Potential} {Type} on {Nonsmooth} {Surfaces}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--18}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_2_a0/} }
TY - JOUR AU - M. S. Agranovich AU - B. A. Amosov TI - Estimates of $s$-Numbers and Spectral Asymptotics for Integral Operators of Potential Type on Nonsmooth Surfaces JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1996 SP - 1 EP - 18 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1996_30_2_a0/ LA - ru ID - FAA_1996_30_2_a0 ER -
%0 Journal Article %A M. S. Agranovich %A B. A. Amosov %T Estimates of $s$-Numbers and Spectral Asymptotics for Integral Operators of Potential Type on Nonsmooth Surfaces %J Funkcionalʹnyj analiz i ego priloženiâ %D 1996 %P 1-18 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1996_30_2_a0/ %G ru %F FAA_1996_30_2_a0
M. S. Agranovich; B. A. Amosov. Estimates of $s$-Numbers and Spectral Asymptotics for Integral Operators of Potential Type on Nonsmooth Surfaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 2, pp. 1-18. http://geodesic.mathdoc.fr/item/FAA_1996_30_2_a0/
[1] Seeley R., “Refinement of the functional calculus of Calderón and Zigmund”, Nederl. Akad. Wetensch. Proc. Ser. A, 68:3 (1965), 521–531 | DOI | MR | Zbl
[2] Agranovich M. S., “Ellipticheskie operatory na zamknutom mnogoobrazii”, Itogi nauki i tekhniki, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 63, VINITI, M., 1990, 5–129 | MR
[3] Birman M. Sh., Solomyak M. Z., “Otsenki singulyarnykh chisel integralnykh operatorov”, UMN, 32:1 (1977), 17–84 | MR | Zbl
[4] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno-odnorodnymi simvolami, I, II”, Vestn. LGU, 1977, no. 13, 13–21 ; 1979, No 13, 5–10 | MR | Zbl | MR | Zbl
[5] Kostometov G. P., “Asimptoticheskoe povedenie spektra integralnykh operatorov s osobennostyu na diagonali”, Matem. sb., 94(136):3 (1974), 444–451 | MR | Zbl
[6] Ivrii V., Semiclassical Microlocal Analysis and Precise Spectral Asymptotics, Preprint 7: Chapter 10. Centre de Mathématiques, École Polytechnique, 1992 | MR
[7] Laptev A. A., “Ob otsenkakh singulyarnykh chisel odnogo klassa integralnykh operatorov”, Zapiski nauchn. seminarov LOMI, 110, 1981, 95–99 | MR | Zbl
[8] Nečas J., Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967 | MR
[9] Verchota G., “Layer potentials and boundary value problems for Laplace equation on Lipschitz domains”, J. Funct. Anal., 59 (1984), 572–611 | DOI | MR | Zbl
[10] Costabel M., “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Anal., 18:3 (1988), 613–626 | DOI | MR
[11] Jerison D., Kenig C. E., “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 113:1 (1995), 161–219 | DOI | MR
[12] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965
[13] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl
[14] Birman M. Sh., Solomyak M. Z., “O glavnom chlene spektralnoi asimptotiki negladkikh ellipticheskikh zadach”, Funkts. analiz i ego prilozh., 4:4 (1970), 1–11 | MR
[15] Agranovich M. S., “Spektralnye svoistva zadach difraktsii.”, Dobavlenie k knige: Voitovich N. N., Katsenelenbaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977 | MR | Zbl
[16] Agranovich M. S., “Spektralnye zadachi dlya uravneniya Gelmgoltsa so spektralnym parametrom v granichnykh usloviyakh na negladkoi granitse” (to appear)