Explicit Algebraic Description of Hyperelliptic Jacobians on the Basis of the Klein $\sigma$-Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 1, pp. 57-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1996_30_1_a6,
     author = {V. M. Buchstaber and V. Z. \`Enol'skii},
     title = {Explicit {Algebraic} {Description} of {Hyperelliptic} {Jacobians} on the {Basis} of the {Klein} $\sigma${-Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {57--60},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a6/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - V. Z. Ènol'skii
TI  - Explicit Algebraic Description of Hyperelliptic Jacobians on the Basis of the Klein $\sigma$-Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1996
SP  - 57
EP  - 60
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a6/
LA  - ru
ID  - FAA_1996_30_1_a6
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A V. Z. Ènol'skii
%T Explicit Algebraic Description of Hyperelliptic Jacobians on the Basis of the Klein $\sigma$-Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1996
%P 57-60
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a6/
%G ru
%F FAA_1996_30_1_a6
V. M. Buchstaber; V. Z. Ènol'skii. Explicit Algebraic Description of Hyperelliptic Jacobians on the Basis of the Klein $\sigma$-Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 1, pp. 57-60. http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a6/

[1] Klein F., Math. Ann., 32 (1888), 351–380 | DOI | MR

[2] Baker H. F., Abels Theorem and the Allied Theory Including the Theory of Theta Functions, Cambridge Univ. Press, Cambridge, 1897

[3] Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[4] McKean H. P., van Moerbeke P., “The spectrum of Hill's equation”, Invent. Math., 30 (1975), 217–274 | DOI | MR | Zbl

[5] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[6] Bukhshtaber V. M., Enolskii V. Z., “Abelevy Blokhovskie resheniya dvumernogo uravneniya Shrëdingera”, UMN, 50:2 (1995), 147–148 | DOI | MR | Zbl

[7] Bukhshtaber V. M., Leikin D. V., Enolskii V. Z., “Matrichnaya realizatsiya giperellipticheskikh mnogoobrazii Kummera”, UMN, 51:2 (1996), 147–148 | DOI | MR | Zbl

[8] Baker H. F., Multiply Periodic Functions, Cambridge Univ. Press, Cambridge, 1907 | Zbl