Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1996_30_1_a18, author = {S. I. Yakovlev}, title = {Singular {Spectrum} of the {Friedrichs} {Model} {Operators} in a {Neighborhood} of the {Singular} {Point}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {92--95}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a18/} }
TY - JOUR AU - S. I. Yakovlev TI - Singular Spectrum of the Friedrichs Model Operators in a Neighborhood of the Singular Point JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1996 SP - 92 EP - 95 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a18/ LA - ru ID - FAA_1996_30_1_a18 ER -
S. I. Yakovlev. Singular Spectrum of the Friedrichs Model Operators in a Neighborhood of the Singular Point. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 1, pp. 92-95. http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a18/
[1] Naboko S. N., “Uniqueness theorems for operator-valued functions with positive imaginary part, and the singular spectrum in the selfadjoint Friedrichs model”, Ark. Mat., 25:1 (1987), 115–140 | DOI | MR | Zbl
[2] Naboko S. N., Yakovlev S. I., “Ob usloviyakh konechnosti singulyarnogo spektra v samosopryazhennoi modeli Fridrikhsa”, Funkts. analiz i ego pril., 24:4 (1990), 88–89 | MR | Zbl
[3] Dynkin E. M., Naboko S. N., Yakovlev S. I., “Granitsa konechnosti singulyarnogo spektra v samosopryazhennoi modeli Fridrikhsa”, Algebra i analiz, 3:2 (1991), 77–90 | MR
[4] Pavlov B. S., Petras S. V., “O singulyarnom spektre slabo vozmuschennogo operatora umnozheniya”, Funkts. analiz i ego pril., 4:2 (1970), 54–61 | MR | Zbl
[5] Mikityuk Ya. V., DAN SSSR, 303:1 (1988), 33–36 | MR
[6] Yakovlev S. I., Vestnik LGU, ser. 1, 1990, no. 1, 116–117 | MR
[7] Yakovlev S. I., Depon. v VINITI, No 2050-V ot 17.05.91
[8] Faddeev L. D., Tr. MIAN, 73, 1964, 292–313 | MR | Zbl
[9] Naboko S. N., Yakovlev S. I., “O tochechnom spektre diskretnogo operatora Shredingera”, Funkts. analiz i ego pril., 26:2 (1992), 85–88 | MR | Zbl
[10] Naboko S. N., Yakovlev S. I., “Diskretnyi operator Shredingera. Tochechnyi spektr, lezhaschii na nepreryvnom”, Algebra i analiz, 4:3 (1992), 183–195 | MR | Zbl