Geodesic Modeling and Solvability Conditions for a Two-End Problem for Multivalued Functionals
Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 1, pp. 89-92
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1996_30_1_a17,
author = {E. I. Yakovlev},
title = {Geodesic {Modeling} and {Solvability} {Conditions} for a {Two-End} {Problem} for {Multivalued} {Functionals}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {89--92},
year = {1996},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a17/}
}
TY - JOUR AU - E. I. Yakovlev TI - Geodesic Modeling and Solvability Conditions for a Two-End Problem for Multivalued Functionals JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1996 SP - 89 EP - 92 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a17/ LA - ru ID - FAA_1996_30_1_a17 ER -
E. I. Yakovlev. Geodesic Modeling and Solvability Conditions for a Two-End Problem for Multivalued Functionals. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 1, pp. 89-92. http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a17/
[1] Yakovlev E. I., “Dvukhkontsevaya zadacha dlya nekotorogo klassa mnogoznachnykh funktsionalov”, Funkts. analiz i ego pril., 24:4 (1990), 63–73 | MR
[2] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | DOI | MR | Zbl
[3] Shapiro Ya. L., Igoshin V. A., Yakovlev E. I., Izv. vuzov, ser. matem., 1985, no. 2, 78–80 | MR
[4] Bolotin S. V., Vestnik MGU, ser. matem.-mekh., 1986, no. 5, 51–53 | MR | Zbl
[5] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR