Nonunitary Part of the Tensor Product of Two Representations of the Group $SO_0(n-1,1)$, One of Which is Unitary
Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 1, pp. 86-89

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1996_30_1_a16,
     author = {Sh. Sh. Sultanov},
     title = {Nonunitary {Part} of the {Tensor} {Product} of {Two} {Representations} of the {Group} $SO_0(n-1,1)$, {One} of {Which} is {Unitary}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {86--89},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a16/}
}
TY  - JOUR
AU  - Sh. Sh. Sultanov
TI  - Nonunitary Part of the Tensor Product of Two Representations of the Group $SO_0(n-1,1)$, One of Which is Unitary
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1996
SP  - 86
EP  - 89
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a16/
LA  - ru
ID  - FAA_1996_30_1_a16
ER  - 
%0 Journal Article
%A Sh. Sh. Sultanov
%T Nonunitary Part of the Tensor Product of Two Representations of the Group $SO_0(n-1,1)$, One of Which is Unitary
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1996
%P 86-89
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a16/
%G ru
%F FAA_1996_30_1_a16
Sh. Sh. Sultanov. Nonunitary Part of the Tensor Product of Two Representations of the Group $SO_0(n-1,1)$, One of Which is Unitary. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 1, pp. 86-89. http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a16/