Topological Classification of Trigonometric Polynomials and Combinatorics of Graphs with an Equal Number of Vertices and Edges
Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1996_30_1_a0,
     author = {V. I. Arnol'd},
     title = {Topological {Classification} of {Trigonometric} {Polynomials} and {Combinatorics} of {Graphs} with an {Equal} {Number} of {Vertices} and {Edges}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a0/}
}
TY  - JOUR
AU  - V. I. Arnol'd
TI  - Topological Classification of Trigonometric Polynomials and Combinatorics of Graphs with an Equal Number of Vertices and Edges
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1996
SP  - 1
EP  - 17
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a0/
LA  - ru
ID  - FAA_1996_30_1_a0
ER  - 
%0 Journal Article
%A V. I. Arnol'd
%T Topological Classification of Trigonometric Polynomials and Combinatorics of Graphs with an Equal Number of Vertices and Edges
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1996
%P 1-17
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a0/
%G ru
%F FAA_1996_30_1_a0
V. I. Arnol'd. Topological Classification of Trigonometric Polynomials and Combinatorics of Graphs with an Equal Number of Vertices and Edges. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/FAA_1996_30_1_a0/

[1] Davis C., “Extrema of a polynomial”, Am. Math. Monthly, 64 (1957), 679–680 | DOI | MR

[2] Thom R., “L'equivalence d'une fonction différentiable et d'un polynome”, Topology, 3 (1965), 297–307 | DOI | MR | Zbl

[3] Zdravkovska S., “Topologicheskaya klassifikatsiya polinomialnykh otobrazhenii”, UMN, 25:4 (1970), 179–180 | MR | Zbl

[4] Arnold V. I., “Kriticheskie tochki funktsii i klassifikatsiya kaustik”, UMN, 29:3 (1974), 243–244 | MR

[5] Looijenga E., “The complement of the bifurcation variety of a simple singularity”, Invent. Math., 23 (1974), 105–116 | DOI | MR | Zbl

[6] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, t. 1, 2, Nauka, M., 1982, 1984 | MR

[7] Goryunov V. V., “Geometriya bifurkatsionnykh diagramm prostykh proektsii na pryamuyu”, Funkts. analiz i ego pril., 15:2 (1981), 77–82 | MR | Zbl

[8] Goryunov V. V., “Subprincipal Springer cones and morsifications of Laurent polynomials and $D_\mu$ singularities”, Singularities and Bifurcations, Adv. Sov. Math., 21, eds. V. I. Arnold, 1994, 163–188 | MR | Zbl

[9] Arnold V. I., “Topologicheskie invarianty algebraicheskikh funktsii, II”, Funkts. analiz i ego pril., 4:2 (1970), 1–9 | MR | Zbl

[10] Natanzon S. M., “Uniformizatsiya prostranstv meromorfnykh funktsii”, DAN SSSR, 287:5 (1986) | MR | Zbl

[11] Kazarian M. E., Singularities of functions on the circle and relative Morse theory, Preprint: Stockholm University. Submitted to Topology, 1995

[12] Kazarian M. E., “Nonlinear version of Arnold's theorem on flattening points”, C. R. Acad. Sci. Paris, 323 (1996), 63–68 | MR | Zbl

[13] Kazaryan M. E., “Otnositelnaya teoriya Morsa odnomernykh rassloenii i tsiklicheskie gomologii”, Funkts. analiz i ego pril., 31:1 (1997), 20–31 | DOI | MR | Zbl

[14] Arnold V. I., “Springer numbers and morsification spaces”, J. Alg. Geom., 1 (1992), 197–214 | MR

[15] Arnold V. I., “Bernoulli–Euler updown numbers associated with function singularities, their combinatorics and arithmetics”, Duke Math. J., 63:2 (1991), 537–555 | DOI | MR | Zbl

[16] Arnold V. I., “Ischislenie zmei i kombinatorika chisel Bernulli, Eilera i Springera grupp Koksetera i prostranstv morsifikatsii”, UMN, 47:1 (1992), 3–45 | MR | Zbl

[17] Arnold V. I., “Topologicheskie problemy teorii rasprostraneniya voln”, UMN, 51:1 (1996), 3–50 | DOI | MR | Zbl