Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1995_29_4_a7, author = {M. I. Kadets}, title = {On the {Relationship} between the {Strong} and {Scalar} {Almost} {Periodicity} of {Banach} {Representations} of the {Group} of {Reals}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {75--77}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1995_29_4_a7/} }
TY - JOUR AU - M. I. Kadets TI - On the Relationship between the Strong and Scalar Almost Periodicity of Banach Representations of the Group of Reals JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1995 SP - 75 EP - 77 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1995_29_4_a7/ LA - ru ID - FAA_1995_29_4_a7 ER -
%0 Journal Article %A M. I. Kadets %T On the Relationship between the Strong and Scalar Almost Periodicity of Banach Representations of the Group of Reals %J Funkcionalʹnyj analiz i ego priloženiâ %D 1995 %P 75-77 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1995_29_4_a7/ %G ru %F FAA_1995_29_4_a7
M. I. Kadets. On the Relationship between the Strong and Scalar Almost Periodicity of Banach Representations of the Group of Reals. Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 4, pp. 75-77. http://geodesic.mathdoc.fr/item/FAA_1995_29_4_a7/
[1] Lyubich Yu. I., Vvedenie v teoriyu banakhovykh predstavlenii grupp, VSh, Kharkov, 1985 | MR
[2] Lyubich Yu. I., “Ob usloviyakh polnoty sistemy sobstvennykh vektorov korrektnogo operatora”, UMN, 18:1 (1963), 165–171 | MR | Zbl
[3] Amerio L., “Abstract almost-periodic functions and functional equations”, Boll. Un. Mat. Ital., 20 (1965), 287–334 | MR | Zbl
[4] Kadets M. I., Kyursten K. D., Teoriya funktsii, funkts. anal i pril., 1980, no. 33, 45–49 | MR | Zbl
[5] Bessaga C., Pelczynski A., Selected topics in infinite-dimensional topology, PWN, Warszawa, 1975 | MR | Zbl
[6] Kadets M. I., Lyubich Yu. I., Teoriya funktsii, funkts. anal. i pril., 53 (1990), 3–5 | MR