Asymptotic Stability of Linearizations of a Planar Vector Field with a Singular Point Implies Global Stability
Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 4, pp. 17-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1995_29_4_a1,
     author = {A. A. Glutsyuk},
     title = {Asymptotic {Stability} of {Linearizations} of a {Planar} {Vector} {Field} with a {Singular} {Point} {Implies} {Global} {Stability}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {17--30},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1995_29_4_a1/}
}
TY  - JOUR
AU  - A. A. Glutsyuk
TI  - Asymptotic Stability of Linearizations of a Planar Vector Field with a Singular Point Implies Global Stability
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1995
SP  - 17
EP  - 30
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1995_29_4_a1/
LA  - ru
ID  - FAA_1995_29_4_a1
ER  - 
%0 Journal Article
%A A. A. Glutsyuk
%T Asymptotic Stability of Linearizations of a Planar Vector Field with a Singular Point Implies Global Stability
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1995
%P 17-30
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1995_29_4_a1/
%G ru
%F FAA_1995_29_4_a1
A. A. Glutsyuk. Asymptotic Stability of Linearizations of a Planar Vector Field with a Singular Point Implies Global Stability. Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 4, pp. 17-30. http://geodesic.mathdoc.fr/item/FAA_1995_29_4_a1/

[1] Meisters G., Olech C., “Solution of the global stability Jacobian conjecture for the polynomial case”, Analyse Mathématique et Applications, Gauthier–Villars, Paris, 1988, 373–381 | MR

[2] Olech C., “On the global stability of an autonomous system on the plane”, Cont. Differential Eq., 1 (1963), 389–400 | MR | Zbl

[3] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[4] Glutsyuk A. A., “Polnoe reshenie problemy yakobiana dlya vektornykh polei na ploskosti”, UMN, 49:3 (1994), 179–180 | MR | Zbl

[5] Barabanov N. E., “O zadache Kalmana”, Sib. matem. zh., 29(3), 333–341 | MR | Zbl