Asymptotic Stability of Linearizations of a Planar Vector Field with a Singular Point Implies Global Stability
Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 4, pp. 17-30
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1995_29_4_a1,
author = {A. A. Glutsyuk},
title = {Asymptotic {Stability} of {Linearizations} of a {Planar} {Vector} {Field} with a {Singular} {Point} {Implies} {Global} {Stability}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {17--30},
year = {1995},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1995_29_4_a1/}
}
TY - JOUR AU - A. A. Glutsyuk TI - Asymptotic Stability of Linearizations of a Planar Vector Field with a Singular Point Implies Global Stability JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1995 SP - 17 EP - 30 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/FAA_1995_29_4_a1/ LA - ru ID - FAA_1995_29_4_a1 ER -
A. A. Glutsyuk. Asymptotic Stability of Linearizations of a Planar Vector Field with a Singular Point Implies Global Stability. Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 4, pp. 17-30. http://geodesic.mathdoc.fr/item/FAA_1995_29_4_a1/
[1] Meisters G., Olech C., “Solution of the global stability Jacobian conjecture for the polynomial case”, Analyse Mathématique et Applications, Gauthier–Villars, Paris, 1988, 373–381 | MR
[2] Olech C., “On the global stability of an autonomous system on the plane”, Cont. Differential Eq., 1 (1963), 389–400 | MR | Zbl
[3] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl
[4] Glutsyuk A. A., “Polnoe reshenie problemy yakobiana dlya vektornykh polei na ploskosti”, UMN, 49:3 (1994), 179–180 | MR | Zbl
[5] Barabanov N. E., “O zadache Kalmana”, Sib. matem. zh., 29(3), 333–341 | MR | Zbl