Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1995_29_3_a14, author = {L. E. Positsel'skii}, title = {Relation {Between} the {Hilbert} {Series} of {Quadratic} {Dual} {Algebras} does not {Imply} {Koszulity}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {83--87}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a14/} }
TY - JOUR AU - L. E. Positsel'skii TI - Relation Between the Hilbert Series of Quadratic Dual Algebras does not Imply Koszulity JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1995 SP - 83 EP - 87 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a14/ LA - ru ID - FAA_1995_29_3_a14 ER -
L. E. Positsel'skii. Relation Between the Hilbert Series of Quadratic Dual Algebras does not Imply Koszulity. Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 3, pp. 83-87. http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a14/
[1] Priddy S. B., “Koszul resolutions”, Trans. Am. Math. Soc., 152:1 (1970), 39–60 | DOI | MR | Zbl
[2] Fröberg R., “Determination of a class of Poincaré series”, Math. Scand., 37 (1975), 29–39 | DOI | MR | Zbl
[3] Löfwall C., “On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra”, Algebra, algebraic topology and their interactions (Stockholm, 1983), Lect. Notes Math., 1183, Springer, Berlin, 1986, 291–338 | DOI | MR
[4] Backelin J., A Distributiveness Property of Augmented Algebras and Some Related Homological Results, Ph. D. Thesis, Stockholm, 1982 | Zbl
[5] Backelin J., Fröberg R., “Koszul algebras, Veronese subrings and rings with linear resolutions”, Rev. Roumaine Math. Pures Appl., 30:2 (1985), 85–97 | MR | Zbl
[6] Manin Yu. L., “Some remarks on Koszul algebras and quantum groups”, Ann. Inst. Fourier, 37:4 (1987), 191–205 | DOI | MR | Zbl
[7] Beilinson A., Ginsburg V., Mixed categories, Ext-duality and representations (results and conjectures), Preprint, 1986
[8] Beilinson A. A., Ginsburg V. A., Schechtman V. V., “Koszul duality”, J. Geom. Phys., 5:3 (1988), 317–350 | DOI | MR | Zbl
[9] Beilinson A. A., Ginsburg V. A., Soergel W., “Koszul duality patterns in representation theory”, J. Am. Math. Soc., 9:2 (1996), 473–527 | DOI | MR | Zbl
[10] Jonsson B., “Distributive sublattices of a modular lattice”, Proc. Am. Math. Soc., 6 (1955), 682–688 | DOI | MR | Zbl
[11] Musti R., Buttafuoco E., “Sui subreticoli distributivi dei reticoli modulari”, Boll. Un. Mat. Ital., 11 (1956), 584–587 | MR | Zbl
[12] Anick D., Proc. of 1983 Conf. on algebra, topology and $K$-theory in honor of J. Moore, Princeton Univ., 1988, 247–331
[13] Ufnarovskii V. A., Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 57, VINITI, M., 1990, 5–177 | MR