Relation Between the Hilbert Series of Quadratic Dual Algebras does not Imply Koszulity
Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 3, pp. 83-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1995_29_3_a14,
     author = {L. E. Positsel'skii},
     title = {Relation {Between} the {Hilbert} {Series} of {Quadratic} {Dual} {Algebras} does not {Imply} {Koszulity}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {83--87},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a14/}
}
TY  - JOUR
AU  - L. E. Positsel'skii
TI  - Relation Between the Hilbert Series of Quadratic Dual Algebras does not Imply Koszulity
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1995
SP  - 83
EP  - 87
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a14/
LA  - ru
ID  - FAA_1995_29_3_a14
ER  - 
%0 Journal Article
%A L. E. Positsel'skii
%T Relation Between the Hilbert Series of Quadratic Dual Algebras does not Imply Koszulity
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1995
%P 83-87
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a14/
%G ru
%F FAA_1995_29_3_a14
L. E. Positsel'skii. Relation Between the Hilbert Series of Quadratic Dual Algebras does not Imply Koszulity. Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 3, pp. 83-87. http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a14/

[1] Priddy S. B., “Koszul resolutions”, Trans. Am. Math. Soc., 152:1 (1970), 39–60 | DOI | MR | Zbl

[2] Fröberg R., “Determination of a class of Poincaré series”, Math. Scand., 37 (1975), 29–39 | DOI | MR | Zbl

[3] Löfwall C., “On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra”, Algebra, algebraic topology and their interactions (Stockholm, 1983), Lect. Notes Math., 1183, Springer, Berlin, 1986, 291–338 | DOI | MR

[4] Backelin J., A Distributiveness Property of Augmented Algebras and Some Related Homological Results, Ph. D. Thesis, Stockholm, 1982 | Zbl

[5] Backelin J., Fröberg R., “Koszul algebras, Veronese subrings and rings with linear resolutions”, Rev. Roumaine Math. Pures Appl., 30:2 (1985), 85–97 | MR | Zbl

[6] Manin Yu. L., “Some remarks on Koszul algebras and quantum groups”, Ann. Inst. Fourier, 37:4 (1987), 191–205 | DOI | MR | Zbl

[7] Beilinson A., Ginsburg V., Mixed categories, Ext-duality and representations (results and conjectures), Preprint, 1986

[8] Beilinson A. A., Ginsburg V. A., Schechtman V. V., “Koszul duality”, J. Geom. Phys., 5:3 (1988), 317–350 | DOI | MR | Zbl

[9] Beilinson A. A., Ginsburg V. A., Soergel W., “Koszul duality patterns in representation theory”, J. Am. Math. Soc., 9:2 (1996), 473–527 | DOI | MR | Zbl

[10] Jonsson B., “Distributive sublattices of a modular lattice”, Proc. Am. Math. Soc., 6 (1955), 682–688 | DOI | MR | Zbl

[11] Musti R., Buttafuoco E., “Sui subreticoli distributivi dei reticoli modulari”, Boll. Un. Mat. Ital., 11 (1956), 584–587 | MR | Zbl

[12] Anick D., Proc. of 1983 Conf. on algebra, topology and $K$-theory in honor of J. Moore, Princeton Univ., 1988, 247–331

[13] Ufnarovskii V. A., Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 57, VINITI, M., 1990, 5–177 | MR