Elliptic Sklyanin Algebras. The Case of Points of Finite Order
Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 2, pp. 9-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1995_29_2_a1,
     author = {A. V. Odesskii and B. L. Feigin},
     title = {Elliptic {Sklyanin} {Algebras.} {The} {Case} of {Points} of {Finite} {Order}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {9--21},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1995_29_2_a1/}
}
TY  - JOUR
AU  - A. V. Odesskii
AU  - B. L. Feigin
TI  - Elliptic Sklyanin Algebras. The Case of Points of Finite Order
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1995
SP  - 9
EP  - 21
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1995_29_2_a1/
LA  - ru
ID  - FAA_1995_29_2_a1
ER  - 
%0 Journal Article
%A A. V. Odesskii
%A B. L. Feigin
%T Elliptic Sklyanin Algebras. The Case of Points of Finite Order
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1995
%P 9-21
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1995_29_2_a1/
%G ru
%F FAA_1995_29_2_a1
A. V. Odesskii; B. L. Feigin. Elliptic Sklyanin Algebras. The Case of Points of Finite Order. Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 2, pp. 9-21. http://geodesic.mathdoc.fr/item/FAA_1995_29_2_a1/

[1] Odesskii A. V., Feigin B. L., Algebry Sklyanina, assotsiirovannye s ellipticheskoi krivoi, Izd. In-ta teor. fiziki AN USSR, Kiev, 1988 | MR

[2] Odesskii A. V., Feigin B. L., “Ellipticheskie algebry Sklyanina”, Funkts. analiz i ego pril., 23:3 (1989), 45–54 | MR

[3] Odesskii A. V., Feigin B. L., “Konstruktsii ellipticheskikh algebr Sklyanina i kvantovykh $R$-matrits”, Funkts. analiz. i ego pril., 27:1 (1993), 37–45 | MR | Zbl

[4] Odesski A. V., Rational degeneration of elliptic quadratic algebras, RIMS/91, Project “Infinite Analysis”, June 1–August 31, 1991 | MR

[5] Michio Jimbo, Topics from Representations of $U_q$. An Introductory Guide to Physicists, Department of Mathematics, Faculty of Science, Kyoto University | MR