Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1995_29_2_a0, author = {I. M. Krichever}, title = {General {Rational} {Reductions} of the {KP} {Hierarchy} and {Their} {Symmetries}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--8}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1995_29_2_a0/} }
I. M. Krichever. General Rational Reductions of the KP Hierarchy and Their Symmetries. Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 2, pp. 1-8. http://geodesic.mathdoc.fr/item/FAA_1995_29_2_a0/
[1] Zakharov V. E., Shabat A. B., “Integrirovanie uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya, I”, Funkts. analiz i ego pril., 8:4 (1974), 43–53 | Zbl
[2] Dryuma V. S., “Ob analiticheskom reshenii dvumernogo uravneniya Kortevega–de Friza”, Pisma v ZhETF, 19:12 (1974), 219–225
[3] Sato M., Soliton equations and universal Grassmann manifold, Math. Lect. Notes Ser., 18, Tokyo, 1984
[4] Takebe T., “From general Zakharov–Shabat equations to KP and the Toda lattice hierarchies”, Proc. RIMS Research Project 1991, Adv. Ser. Math. Phys., 16, 1992, 923–940 | MR
[5] Ore O., “Theory of noncommutative polynomials”, Ann. of Math., 34 (1933), 480–508 | DOI | MR | Zbl
[6] Drinfeld V. G., Sokolov V. V., “Algebry Li i uravneniya tipa KdF”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 24, VINITI, M., 1984, 81–180 | MR
[7] Krichever I., “Tau-function of the universal Whitham hierarchy and topological field theories”, Comm. Pure Appl. Math., 47 (1994), 1–40 | DOI | MR
[8] Topan F., $N=1,2$ Super-NLS Hierarchies as Super-KP Coset Reductions, Preprint ENSLAPP-L-467/94, Paris | MR
[9] Orlov A. Yu., “Vertex operators, $\bar\partial$-problems, symmetries, variational identities and Hamiltonian formalism for $2+1$ integrable systems”, Plasma Theory and Nonlinear and Turbulent Processes in Physics, World Scientific, Singapore, 1988, 116–134 | MR | Zbl
[10] Zakharov V. E., “Dispersionless limit of integrable systems in $2+1$ dimensions”, Singular limits of Dispersive Waves, NATO Adv. Sci. Inst. Ser. B Phys., 320eds. . N. Ercolani, I. Gabitov, D. Levermore, and D. Serre, Plenum, New York, 1994, 165–174 | MR | Zbl