Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1994_28_4_a3, author = {A. V. Stoyanovskii and B. L. Feigin}, title = {A {Realization} of the {Modular} {Functor} in the {Space} of {Differentials} and the {Geometric} {Approximation} of the {Moduli} {Space} of $G${-Bundles}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {42--65}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {1994}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1994_28_4_a3/} }
TY - JOUR AU - A. V. Stoyanovskii AU - B. L. Feigin TI - A Realization of the Modular Functor in the Space of Differentials and the Geometric Approximation of the Moduli Space of $G$-Bundles JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1994 SP - 42 EP - 65 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1994_28_4_a3/ LA - ru ID - FAA_1994_28_4_a3 ER -
%0 Journal Article %A A. V. Stoyanovskii %A B. L. Feigin %T A Realization of the Modular Functor in the Space of Differentials and the Geometric Approximation of the Moduli Space of $G$-Bundles %J Funkcionalʹnyj analiz i ego priloženiâ %D 1994 %P 42-65 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1994_28_4_a3/ %G ru %F FAA_1994_28_4_a3
A. V. Stoyanovskii; B. L. Feigin. A Realization of the Modular Functor in the Space of Differentials and the Geometric Approximation of the Moduli Space of $G$-Bundles. Funkcionalʹnyj analiz i ego priloženiâ, Tome 28 (1994) no. 4, pp. 42-65. http://geodesic.mathdoc.fr/item/FAA_1994_28_4_a3/
[1] Segal G., Conformal field theory, Oxford preprint, 1988 | MR
[2] Hitchin N. J., “Flat connections and geometric quantization”, Comm. Math. Phys., 131 (1990), 347–380 | DOI | MR | Zbl
[3] Kumar S., Narasimhan M. S., Ramanathan A., Infinite grassmannians and moduli spaces of $G$-bundles, Preprint, 1993 | MR
[4] Beilinson A. A., Feigin B. L., Mazur B., An introduction to algebraic field theories on curves, Preprint, 1993 | MR
[5] Stoyanovskii A. V., Feigin B. L., “Funktsionalnye modeli predstavlenii algebr tokov i polubeskonechnye kletki Shuberta”, Funkts. analiz i ego pril., 28:1 (1994), 68–90 | MR | Zbl
[6] Pressli E., Sigal G., Gruppy petel, Mir, M., 1990 | MR
[7] Lepowsky J., Primc M., “Structure of the standard modules for the affine Lie algebra $A_1^{(1)}$”, Contemp. Math., 46, AMS, Providence, 1985 | DOI | MR | Zbl
[8] Bertram A., “Moduli of rank $2$ vector bundles, theta-divisors, and the geometry of curves in projective space”, J. Diff. Geom., 35 (1992), 429–469 | MR | Zbl
[9] Thaddeus M., Stable pairs, linear systems, and the Verlinde formula, Thesis, Oxford, 1992 | MR
[10] Bertram A., “Generalized $SU(2)$ theta functions”, Invent. Math., 113 (1993), 351–372 | DOI | MR | Zbl
[11] Mumford D., Fogarty J., Geometric Invariant Theory, 2nd edition, Springer–Verlag, New-York, 1982 | MR
[12] Verlinde E., “Fusion rules and modular transformations in $2D$ conformal field theory”, Nuclear Phys. B, 300 (1988), 360 | DOI | MR